Trackling Ditficult Combinatorial Problems
rrr

Ihere are two principal approaches to tackling difficult
combinatorial problems (NP-hard problems):

UUse a strategy that guarantees solving the problem exactly.
but doesn’t guarantee to find a solution in polynomial time

Use an approximation algorithm that can find an
approximate (sub-optimal) solution in polynomial time
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A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.



EXxact Solution Strategies
rrr

exhaustive search (brute force)
usetul only for: smallfinstances

dynamic programming
applicable to some problems (e.q., the knapsack problem)

backtracking
eliminates some Unnecessary. cases from consideration

yields solutions inireasonable time for many. instances but
Wworst case Is still' exponential

branch-and-bound

further refines the backtracking idea for optimization

problems
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12.1 Backtracking '

Construct the state-space tree
nodes: partial’solutions
edges: choices Iin extending partial selutions

Explore the state space tree using depth-first search

“Prune” nonpromising nodes

stop exploring subtrees rooted at nodes that cannot lead
to a solution and backtracks to such a node’s parent to
continue the search
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Example: n-Queens Problem
'y

rFrau

Place n gueens on an n-by-n chess board so that no two ofithem
are in the same row, column, or diagonal

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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State-Space Tiree of the 4-Queens Problem
I'rs

x denotes an
unsuccessful
attempt to
place a queen
In the
Indicated
column. The
numbers
above the
nodes indicate
the order In
which the
nodes are
generated

arson
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Example: Hamiltonian Circuit Problem
'y

%

dead end dead end

dead end

solution

14
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Example: Subset-Sum Problem
{11,

~Ind a subset of a given set A={a;, . . ., &, of n
nositive Integers whose sum Is equal to a given

nositive integer d.

oK example,
for A={1, 2, 5, 6, 8} and d'= 9, there are twa solutions:
{1, 2, 6} and {1, 8}

|l1lAl

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7



Example: Subset-Sum Problem (Cont.)'”

wfo 3

with b w/o b with 5 w/o b

w/o 6 with 6 w/o 6 with 6 w/fo 6 %

0+13<1b
(14) (8) © 3 (- ®

%  with 7 wjo 7 X X X X
144+7>15 9+7>16 3+/<1b 11+7>15 b+/<1b

© &

solution
8-:.1 5

A={3,5,6, 7}andd =15
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12.2 Branch-and-Bound
'rr

An enhancement oft backtracking
Applicable to optimization problems

For each node (partial solution) ofia state-space tree,
computes a bound on the valtie of the objective function for

all'descendants' ofithe node (extensions of the partial
solution)

Uses the bound for:

ruling out certain nodes as “nonpromising” to prune the
tree — if a node’s bound is not better than the best
selution seen so far:

guiding the search through state-space

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9



L WY

Example: Assignment Problem s

Select one element in each row of the cost matrix C so that:: = =

e NO two selected elements are in the same column
o the sum IS minimized

Example
Job1l Job2 Job3 Job4
Persona 9 2 { 8
Person b

6 3 7
Person ¢ 5 1 8
Persond 7 9 4

LLower bound: Any solution to this problem will'have total cost
atleast: 2+ 3+ 1+4(orS+2+1+4)

i
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Example: Eirst two levels of the state-space tree
r'rs

Figure: LLevels 0'and 1 of the state-space tree for the
Instance ofi the assighment problem being solved with the
pest-first branch-and-bound algorithm. The numbEer: above
a node shows the order in Whichithe node was generated. A
node’s fields indicate the job number assigned to person a
and the lower bound value, I, forthis node

b=2+3+1+4=10

3

Ib=7+4+5+4=20| (b=8+3+1+6=18
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Example (cont.)

r'rr

rVrau
FIGURE: LLevels 0, 1, and 2 ofithe state-space tree for the
Instance ofi the assighment problem being solved with the
pest-first branch-and-bound algorithm
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Example: Complete state-space tree

r'rs
rVrau
FIGURE: Complete state-space tree for the instance of the
assignment problem

c — 3 c — 4
d = 4 d —= 3
cost=13 cost=2b

solution inferior solution



Example: Traveling Salesman Problem’"

[_ower: bound

Where s; IS the sum of the distances fram city i'to the twa
nearest cities, L1 <n.

Example

Ib=[[(1+3) + (8+6)+ (1+2)
+(3+4) + (2+23)]/2] = 14.

111
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Example: Traveling Salesman Problem

/\

Hr

1 4
a b a d a e
Ib=14 Ib=16 Ib=19
, X X
bis not Ib>=1 Ib> |
before ¢ of node 11 of node 11
5 6 7
ab,c a b, d a b e
Ib=16 Ib=16 Ib=19
X
b >/
of node 11
11
abcd abdc a b d e,
(e, a) {d a} (e, a) (c, a)
[=24 [=19 [ =24 /=16
first tour better tour inferior tour optimal tour



Example: Knapsack Proplem
Iy

rVrau
T'he problem: given n'items off known Weights w; and

values V.., = 1,2, .. ., N, and a knapsack of:capacity \\/;
find the most valuable subset ofithe 1items that fit 1n the
Kknapsack.

ASSUME: V Wy = W5\ = oo = VAN

Upper bound for the node 12 ub= i+ (W — w)(v;. W)
V. IS total value so far
W IS total capacity, so far: item  weight  value
Example:

The knapsack’s capacity
\Weis 10

F=or node 0:
ub =0 + (10-0)*(40/4)=100

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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Example: Knapsack Proplem

w=0v=0
ub =100
with 1
1
w=4 v=40
ub =76
with 2 wfo 2
3 4
w=11 w=4 v=40
ub =70
not fe};sible with 3 wio 3
5 6
w=9 v==8b w=4 v=40
ub = 69 ub = 64
X
with 4 wjo 4 inferior to node 8
7 8
w=12 w=9 v=6b
value = 6b
X
not feasible optimal solution

w/fo 1

2

w=0 v==0

ub = 60

X
inferior to
node 8



12.3 Approximation Approach
r'rr

rVrau
Apply a fast (I.e., a polynomial-time) approximation algorithm
to get a solution that 1S not necessarily optimal but hopefully
close to It

ACCUracy measures:

accuracy ratio of-an approximate solution s,
[(S,) = f(S,)/ 1(s*) for minimization problems
[(S,) = f(S*) /[ 1(S;) for maximization problems

where f(s,) ana f(s*) are values of the cbjective function f for:
the approximate solution s, and actual optimal solution s*

performance ratio of: the algorithm A
the lowest upper bound ofi r(s;) on all'instances

111
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Nearest-Neighbor Algorithmifor TSP T

Starting at some city, always go to the nearest unvisited city,v o=

and, after visiting all the cities, return to the starting one
1

A B

s,.: A—B-C-D-Aof length 10
6 o 5 2

s: A—-B-D-C-Aof length 8
D C

1

Note: Nearest-neighbor tour may depend oni the starting City,

Accuracy: R,= o (unbounded above) — make the length off AD
arpitrarily large in the above example

111
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Multifragment-Heuristic Algorithm
r'rr

Stage 1 Sort the edges in nondecreasing order oftweights. S
Initialize the set of: tour edges to be constructed to
empty set

Stage 2: Add next edge on the sorted list to the tour, skipping
those whose addition would’ve created a vertex of
degree 3 or a cycle of length less than n. Repeat
this step until'a tour of: length n'is obtained

Note: R = oo, but this algorithm tends to produce better tours
than the nearest-neighbor algerithm

111
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Twice-Around-the-Tree Algorthm
rrr

- - . Vv u
Stage 1: Construct a minimum spanning tree of the graph
(e.g., by Prim’s or Kruskal’s algorithm)

Stage 2: Starting at an arbitrary vertex, perform a walk around the
minimum: spanning tree recording all the vertices passed by. (TS

can be done by a DES traversal.)

Stage 3: Scan the vertex list obtained in Step 2 and eliminate from it all
repeated occurrences ofithe same Vertex except the starting one at the
end of:the list. (‘(I'his step: 1s equivalent to: making shortcuts i the
walk.) T'he vertices remaining on the list will'form a Hamiltonian

Circult, which is the output ofithe algorithm

Note: R, = oo for general instances, but this algorithm tends to
produce Petter tours than the nearest-neighbor algorithm

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21
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Example

Walk;: a—-b-c-b-d-e—-d-b-a Tour: a—b-c—-d-e-a

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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Christofides Algorithm
r'rr

Stage 1= Construct a minimum spanning tree ofi the graph s

Stage 2: Add edges of a minimum-weight matching of:all the odd
Vertices In the minmimum spanning tree

Stage 3: Eind an' Eulerian circuit of the multigraph obtained in
Stage 2

Stage 3: Create a tour from the path constructed in Stage 2 by
making shortcuts to avoid visiting intermediate Vertices
MOKe than once

R, = o0 for general instances, but it tends to produce better
tours than the twice-around-the-minimum-tree alg.

111
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Example: Christofides Algorithm
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Euclidean Instances
I l_

Theorem 1T P# NP, there exists no approximation algorithfnv
for ISP with a finite performance ratio.

Definition An instance ofi 'SP is called Euclidean; 1i1ts
distances satisty two conditions:

1. symmetry: dfi; j] = d[j; 1] for any pair oficities 'and |

2. triangle mequality dli, j] < dii, k] + d{k; ] for any cities I, J, K

For Euclidean instances:

approx. tour length /'optimal tour length < 0.5([1og, n| + 1)
for nearest neighbor and multifragment NEUrIStIC;

approx. tour length / optimal‘tour length < 2
for twice-around-the-tree;

approx. tour length/ optimal‘tour length < 1.5
= fOr Christofides

oy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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[_ocal Search Heuristics for 'SP '

rVra
Start with some initial tour: (e.g., nearest neighbor). On each
iteration, explore the current tour’s neighborhood by
exchanging a few edges init. Ifithe new tour Is shorter, make It
the current tour; otherwise consider another edge change. 1 no
change yields a shorter tour, the current tour IS returned as the
output.

Example of a 2-change

A

I'1
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Example ofia 3-change
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Empirical Data for Euclidean Instances’”

TABLE 12.1 Average tour quality and running times for
various heuristics on the 10,000-city random
uniform Euclidean instances [Joh02]

% excess over the  Running time
Heuristic Held-Karp bound (seconds)

nearest neighbor 24.79 0.28
multifragment 16.42 0.20
Christofides 9.81 1.04
2-opt 4.70 1.41
3-opt 2.88 1.50
Lin-Kernighan 2.00 2.06
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Greedy Algorithm for Knapsack Proble’m"

- - . . Yy v u
Step 15 Order: the 1tems 1n decreasing order: of: relative values:

Vo/Wy = o 2 VW
Step 2: Select the items in this order skipping those that don’t
fit Into the knapsack

Example: The knapsack’®s capacity is 16

item  weight  value V/AWY
1 2 $40 20
2 5 $30 9
3 10 $50 5
4 5 $10 2
Accuracy

R IS Unbounded (e.g., n =2, C=m, W;=1 V;=2, Wo=m, \,=m)
yields exact solutions for the continuous Version

111
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Approximation Scheme for Knapsack Problem
Ir
Step 1: Order the items in decreasing order ofi relative values:
Vo /Wy = 220 = VW,

Step 2: For a given integer parameter k, 0 < k < n, generate all
subsets ofi k rtems or: less and for each ofithose that fit the
Knapsack, add the remaining items in decreasing
order of: therr value to weight ratios

Step 3: Find the most valtiable sulbset among the sulbSsets

senerated in Step 2 and return it as the algorithm’s
output

o Accuracy: f(s*)/1(sy) < 1 + 1/k for any instance of size n
o Time efficiency: O(kn'1)
» [here are fully polynomial'schemes: algerithms with

: polynomial running time as functions of both n and kK

oy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 30
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12. 4 Numerical Algorithms
rrr

rVra
Numerical_algorithms concern with solving mathematical
problems such as

evaluating functions (e.g., \/x, €%, In x, sin x)
solving nonlinear equations

finding extrema of functions

computing definite integrals

Most such problems are of “continuous” nature and can be
solved only approximately

144
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Principal  Accuracy IMELFICS

Absolute error. of approximation (ofie by o)
o - o

Relative error. ofiapproximation (of or by o)
o - o] /o]
undefined fora” =0
often quoted in %
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Two Twpes of EFrors
J2 I

truncation errors
Taylor’s polynomial approximation

eXx 1+ x+ x221 + --- + x|

absolute error < M [X[?*/(n+1)! where M = maxe' for
0<t<X

composite trapezoidal rule

b

(9 dx = (h/2) [f(8) + 221 = (%) + £(B)], h'= (b~ )/
d

absolute error < (b-a)hz M, /12 where M, = max [#7(x))
foras<x<b

= . round-offierrors
- 1

L WY
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Solving Quadratic Equation

Quadratic equation ax? + bx + ¢ = 0 (a=0)
X1, = (b D)/2a where D = b?- 4ac
Problems:

computing square root
use Newton’s method: x..; = 0.5(%, + D/X.)

subtractive cancellation
use alternative formulas (see p. 411)
uise double precision for D= b?-4ac

other: problems (overfiow, etc.)

111
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Notes on Soelving Nonlinear Equations '

There exist no formulas with arithmetic ops. androot = = = ®

extractions for roots ofi polynomials

a.x" +a X"+ .- +3,=0 of degree n=5

Although there exist special methods for approximating roots
ofipolynomials; one can also use general methods for

f(x)=0

Nonlinear equation () = 0 can have one, many, imfinitely
many/, and no roots at all

Useful:

sketch graph of: (%)

Sseparate FootS
g itin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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Tthree Classic Methods

Three classic methods for solving nonlinear eguation
f(x) =0
In one unknown:

pIsection methoad
method of: false position (regula falsr)

Newton’s method

111
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Bisection Method

Based on

Theorem: T (%) IS continuous on asx= b and f(a) and ()
nave opposite signs, then fi(x) =0 hasarootona<x< b

pINary searchiicea

Ir

Approximations x, are middie points ofishrinking segments
X, - X | < (b-a)/2"

: X alWay/s ConVerges to root x but slower compared to others
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 37

L WY



Example of Bisection Method Application I

rFrau

Find the root of
- % - 1=0
With the absolute error not larger than 0.01.

n an o X f(x,)
1 0.0- 2.0+ 1.0 -1.0
2 1.0- 2.0+ 1.5 0.875
3 1.0- 1.5+ 1.25 -(0.296875
. x = 1.3203125
3)
6
Ty
e 8 113125, 113281250 119203128 L-OOIBTAL | vt
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Method ofi False Positi
ethoalofikalse Position T

rVrau
Similar to bisection method but uses X-intercept of line through

(&, f(a)) and (I, f(l)) istead of: middle point of: [a ]

ApPProximations X, are computed by the formula
Xn— [anf(bn) 5 bnf(an)] / [f(bn) 5 f(an)]

=y Normally X, converges faster than bisection method sequence

"= but slower than Newton’s method sequence
- m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 39
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Newton’s Method
ewton’s Metho Y

rVra
\/ery fast method inwhich X.’s are X-1ntercepts of tangent lines

to the graph of: f()

ApPProximations x, are computed by the formula
K+l = Rp = f(xn) / f,(Xn)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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Notes on Newton’s Method
It

Normally;, approximations X, ConVerge to root Very fast but
can diverge with a bad choice ofiinitial approximation X,

Yields a very fast method for computing sguare roots
Xy = 0.5(%, + D/X)

Can be generalized to much more general eguations
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