
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

11.1 Lower Bounds

Lower bound: an estimate on a minimum amount of work

needed to solve a given problem

Examples:

number of comparisons needed to find the largest element

in a set of n numbers

number of comparisons needed to sort an array of size n

number of comparisons necessary for searching in a sorted

array

number of multiplications needed to multiply two n-by-n

matrices

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Lower Bounds (cont.)

Lower bound can be

• an exact count

• an efficiency class ()

Tight lower bound: there exists an algorithm with the same

efficiency as the lower bound

Problem Lower bound Tightness

sorting (nlog n) yes

searching in a sorted array (log n) yes

element uniqueness (nlog n) yes

n-digit integer multiplication (n2) unknown

multiplication of n-by-n matrices (n2) unknown

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Methods for Establishing Lower Bounds

trivial lower bounds

information-theoretic arguments (decision trees)

adversary arguments

problem reduction

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Trivial Lower Bounds

Trivial lower bounds: based on counting the number of items
that must be processed in input and generated as output

Examples
finding max element

polynomial evaluation

sorting

element uniqueness

Hamiltonian circuit existence

Conclusions
may and may not be useful

be careful in deciding how many elements must be processed

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Adversary Arguments

Adversary argument: a method of proving a lower bound by

playing role of adversary that makes algorithm work the hardest

by adjusting input

Example 1: “Guessing” a number between 1 and n with yes/no

questions

Adversary: Puts the number in a larger of the two subsets
generated by last question

Example 2: Merging two sorted lists of size n

a1 < a2 < … < an and b1 < b2 < … < bn

Adversary: ai < bj iff i < j

Output b1 < a1 < b2 < a2 < … < bn < an requires 2n-1 comparisons

of adjacent elements

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

Lower Bounds by Problem Reduction

Idea: If problem P is at least as hard as problem Q, then a lower

bound for Q is also a lower bound for P.

Hence, find problem Q with a known lower bound that can

be reduced to problem P in question.

Example: P is finding MST for n points in Cartesian plane

Q is element uniqueness problem (known to be in (nlogn))

7

11.2 Decision Trees

Decision tree — a convenient model of algorithms involving

comparisons in which:

internal nodes represent comparisons

leaves represent outcomes

Decision tree for finding a minimum of three numbers

Decision Trees and Sorting Algorithms

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Decision tree for the tree-element selection sort

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Decision Trees and Sorting Algorithms

Any comparison-based sorting algorithm can be represented
by a decision tree

Number of leaves (outcomes)  n!

Height of binary tree with n! leaves  log2n!

Minimum number of comparisons in the worst case  log2n!
for any comparison-based sorting algorithm

log2n!  n log2n

This lower bound is tight (mergesort)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

11.3 Classifying Problem Complexity

Is the problem tractable, i.e., is there a polynomial-time (O(p(n))

algorithm that solves it?

Possible answers:

yes (give examples)

no

• because it’s been proved that no algorithm exists at all

(e.g., Turing’s halting problem)

• because it’s been be proved that any algorithm takes

exponential time

unknown

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Problem Types: Optimization and Decision

Optimization problem: find a solution that maximizes or
minimizes some objective function

Decision problem: answer yes/no to a question

Many problems have decision and optimization versions.

E.g.: traveling salesman problem

optimization: find Hamiltonian cycle of minimum length

decision: find Hamiltonian cycle of length  m

Decision problems are more convenient for formal investigation
of their complexity.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Class P

P: the class of decision problems that are solvable in O(p(n))

time, where p(n) is a polynomial of problem’s input size n

Examples:

searching

element uniqueness

graph connectivity

graph acyclicity

primality testing (finally proved in 2002)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Class NP

NP (nondeterministic polynomial): class of decision problems
whose proposed solutions can be verified in polynomial time
= solvable by a nondeterministic polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage
procedure that:

generates a random string purported to solve the problem

checks whether this solution is correct in polynomial time

By definition, it solves the problem if it’s capable of generating
and verifying a solution on one of its tries

Why this definition?

led to development of the rich theory called “computational
complexity”

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal
form (CNF) satisfiable, i.e., are there values of its
variables that makes it true?

This problem is in NP. Nondeterministic algorithm:

Guess truth assignment

Substitute the values into the CNF formula to see if it
evaluates to true

Example: (A | ¬B | ¬C) & (A | B) & (¬B | ¬D | E) & (¬D | ¬E)

Truth assignments:

A B C D E

0 0 0 0 0

. . .

1 1 1 1 1

Checking phase: O(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

What problems are in NP?

Hamiltonian circuit existence

Partition problem: Is it possible to partition a set of n
integers into two disjoint subsets with the same sum?

Decision versions of TSP, knapsack problem, graph
coloring, and many other combinatorial optimization
problems. (Few exceptions include: MST, shortest paths)

All the problems in P can also be solved in this manner (no
guessing is necessary), so we have:

P  NP

Big question: P = NP ?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

NP-Complete Problems

A decision problem D is NP-complete if it’s as hard as any

problem in NP, i.e.,

D is in NP

every problem in NP is polynomial-time reducible to D

Cook’s theorem (1971): CNF-sat is NP-complete

NP-complete

problem

NP problems

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

NP-Complete Problems (cont.)

Other NP-complete problems obtained through polynomial-

time reductions from a known NP-complete problem

Examples: TSP, knapsack, partition, graph-coloring and

hundreds of other problems of combinatorial nature

known

NP-complete

problem

NP problems

candidate

 for NP -

completeness

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

P = NP ? Dilemma Revisited

P = NP would imply that every problem in NP, including all

NP-complete problems, could be solved in polynomial time

If a polynomial-time algorithm for just one NP-complete

problem is discovered, then every problem in NP can be

solved in polynomial time, i.e., P = NP

Most but not all researchers believe that P  NP , i.e. P is a
proper subset of NP

NP-complete

problem

NP problems

	Slide 1: 11.1 Lower Bounds
	Slide 2: Lower Bounds (cont.)
	Slide 3: Methods for Establishing Lower Bounds
	Slide 4: Trivial Lower Bounds
	Slide 5: Adversary Arguments
	Slide 6: Lower Bounds by Problem Reduction
	Slide 7: 11.2 Decision Trees
	Slide 8: Decision Trees and Sorting Algorithms
	Slide 9: Decision Trees and Sorting Algorithms
	Slide 10: 11.3 Classifying Problem Complexity
	Slide 11: Problem Types: Optimization and Decision
	Slide 12: Class P
	Slide 13: Class NP
	Slide 14: Example: CNF satisfiability
	Slide 15: What problems are in NP?
	Slide 16: NP-Complete Problems
	Slide 17: NP-Complete Problems (cont.)
	Slide 18: P = NP ? Dilemma Revisited

