111" [Lower: Bounds
'rr

Yy v u
[.ower bound: an estimate on a minimum amount of:work
needed to solve a given problem

Examples:

number: of:comparisons needed to find the largest element
IN a Set ofi N NUMIBEKS

NUMBEK of: comparisons needed to Sort an array of Size n
NUMPEK ofi comparisons necessary. for searching in'a sorted

array
number: of:multiplications needed to multiply tWwo n-by-n
matrices

4‘

ﬂ‘
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[Lower: Bounds (cont.) '

[_ower: bound can be
an exact count
an efficiency class (€)

{ight lower bound: there exists an algorithm with the same
efficiency as the lower bounad

Problem [Lower: bound Tightness
Sorting Q(nlog n) V/ES
searching In a sorted array. Q(log n) \/es
element UnIqUENESS Q(nlog n) \/es
n-cdigit integer multiplication Q(n?) unknown

"=  multiplication of n-by-n matrices  Q(n?) UnKNeWN

= : A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

| Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2



L WY

144

Methods for Establishing [Lower Bounads
I
trivial lower bounds
Information-theoretic arguments (decision trees)

adve I[Sary/ arguments

problem reduction

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
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Tirivaal lLower Bounds
lvlvl_

Ticivial lower bounds: based on counting the nUMIPEr off Items
that must be processed i imput and generated as output

Examples
finding max element

polynomial evaltation

sorting

element unigqueness

Hamiltonian circuit existence
Conclusions

may. and may. not be useful

: pe careful in deciding how many: elements must e Processed

|
= . A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
| Education, Inc. Upper Saddle River, NJ. All Rights Reserved.



Adversary Arguments
r'rr

Adversary arqument: a method of proving a lower bound by = =

playing role ofiadversary that makes algorithm work the hardest
Py adjusting mMput

Example 1: “Guessing” a number between 1 and n with yes/no
guestions

Adversary: Puts the numiber in a larger of the two Sulsets
generated by last question

Example 2: Merging two sorted lists of size n
y<a<..<a and by <b,<...<b,
Adversary: a; < b iffi i< |
Output by <a; <b,<a,<...<b, <a, Fequires 2n-1 comparisons

;\of adjacent elements

. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
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[Lower: Bounds by Problem Reduction '

Idea: If problem Pis at least as hard as problem Q, then a lower

pound for Q 1s also a lower bound for: P.

Hence, find problem Qwith a known Iower bound that can
e reduced to problem Pian guestion.

Examples Pis finding MSH for n points in Cartesian plane
Q IS element uniqueness problem (known to be in Q(nlogn))

111
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1152 [Decision Trees
I'rr
rVrau
[Decision tree — a convenient model of:algorithms involving
COMPArISeNS 1IN Which:

Internal nodes represent comparisons
leaves represent outcomes

[Decision tree for finding a minimum ofi three NUMIDErs




[Decision Trees and Sorting Algorthms

I'r!

abc

yes /\ no

e

abc abc
Ves no yes 0 no
abc cha bac cha
‘r‘eS no nc) ?eSno ?BS
a<b<c a<c<b c<a<b| |[bc<a<c b<c<a| |c<b<a

Decision tree for the tree-element selection sort

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
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[Decision Tirees and Sorting Algorithms’"

- . . YV ru
Any comparison-based sorting algorithm can e representec
Py a decision tree

Number: ofileaves (outcomes) = n!
Helght of: binary tree with n! leaves > |_Iog2n!-|

Minimum numier: of. comparisons in the worst case = [[log,n! |
for any comparison-based sorting algorithm

[og,nt|=n log,n

This lower bound is tight (Mergesor:t)
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11,8 Classifying Problem Complexity 1Y,

rVra
IS the problem tractable, 1.e.; IS there a polynomial-time (O(p(n))

algorithm that solves 1t?

Possible answers:
Ves (give examples)

Nno

because it’s been proved that no algorithm exists at all
(e.g., Turing’s halting problem)

because it’s been be proved that any algorithm takes
exponential time

-
- unknown

|
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Problem Types: Optimization and Decision

Itr
Optimization problem: find a solution that maximizes or:
MINIMIZES SOME oBjective function

[Decision problem: answer: yes/no to a question

Many problems have decision and optimization VEFSIONS.

E.0.: traveling salesman problem
optimizations find Hamiltonian cycle of minimum length
decision: find Hamiltonian cycle offlength = m

[Decision problems are more convenient for formal investigation
— ofi therr complexity.

oy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11
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Class P
'r

rVrau
P the class ofidecision problems that are solvable in O(p((n))

time, where p(n) is a polynomial of problem’s input size n

Examples:
searching

element UnNIQqUENESS

graph connectivity/

graph acyclicity
<= primality testing (finally proved in 2002)
:‘ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
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Class NP
'r

rVrau
NP (nondetecrministic polynomial): class of: decision problems
Whose proposed solutions can be verified in polynomial time
= solvable by a nondeterministic polynomial algorithm

A nondeterministic polynomial algorithm 1s an abstract tWwo-stage
procedure that:

generates a random string purported to solve the problem
checks Whether: this selution IS correct in polynomial time

By definition, it solves the problem if it’s capable of generating
and verifying a solution on one of Its tries

Why this definition?
led to development of the rich theory called “computational
complexity”

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13



Example: CNFE satisfialility
I
Problem: Is a boolean expression inits conjunctive normal

form (CNE) satisfiable; 1.e.; are there values ofIts
variables that makes It true?

This problem is i NP: Nondeterministic algorithm:

GUuess truth assignment

Substitute the values into the CNFE formula to see ifiit
evaluates to true

Example: (A [[=B| =C) & (A'| B) & (=B’ [ =D E) & (=D [ =E)
Tiruth assignments:
ABCDE
000 00 0

- 11111
my Checking phase: O(n)

|
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What problems are in NP2
rrr

Yy v u
Hamiltonian circunt existence

Partition problem: ISt possible to partition a set ofin
INtegers Into two disjoint sulbsets with the same sum'?

[Decision versions off ISP, knapsack problem, graph
coloring, and many other combinatorial optimization
problems. (Few exceptions include: MSTi, shortest paths)

All'the problems in P can also be solved in thissmanner (no
QUESSING IS Necessary), SO We have:

P.c NP

Big question: P.= NP?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
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NP-Complete Problems
I'rs

rVra
A decision problem D'is NP-complete if it’s as hard as any

problem in NP, 1e.,
Disin NP
every problem in NPIs polynomial-time reducible to D

NP-complete

problem

- m
: Cook’s theorem (1971): CNF-sat IS NP-Complete

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
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A

| §v



NP-Complete Problems (cont.)
I

Other NP-complete problems obtained thrrough polynomial=
time reductions from a known NP-complete problem

known
NP-complete

'\ / problem

candidate

O for NP -

completeness

Examples: ISP, knapsack, partition, graph-coloring and
nundreds ofiother problems of combinatorial' nature

111
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B- = NP 7 Dilemma Revisited
r'rr

P* = NP would imply that every problem in NP, including ailt
NP-complete problems, could be solved in polynomial time

Ifia polynomial-time algorithm for just one NP-complete
problem is discovered; then every problemiin NP can be
solved in polynomial time, 1.e., P = NP

Most but not all researchers believe that P = NP, 1.e. P Is a
Proper subset of NP

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
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