Chapter 105 Iterative Improvement '

Algorithm design technigue for: solving optimization problems

Start with a feasible solution

Repeat the following step until' no Improvement cani e found:

change the current feasible solution to a feasible solution with a better
value of the objective function

Return the last feasible solution as optimal

Note: Typically, a change in a current solution is “small” (local
search)

Major: difficulty: LLocal optimumi vs. global optimum
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Important Examples

simplex method
Ford-kulkerson algorithm for maximum flow problem
maximumi matching of:graph VErtices

Gale-Shapley algorithm for the stable marriage problem

local search heuristics
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10.1" LCinear Programming '

rVrau
Liinear programming (LLP) problem Is to optimize a linear function
of:several variables subject to linear constraints:

maximize (or MINIMIZE) €y X + ...+ C X,
subject to Xt ot a X, =< (or=zor=) b, I=1..m
X;20,..,%X,20

1'he function z = ¢, X + ...+ € % IS called the objective function;
constraints x; = 0, ... , X, = 0rare called nonnegativity constraints
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Example

maximize 3x + 5y

subjectto x+ y<4
x+3y<6
x=0, y=0

I-easible region Is the
set of points defined
Py the constraints
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Geometric solution

maximize 3X + 5y
subject to x+ y<4
x+3y<6
x=0, y=0

X
3x+b5y=20

3x+by=14

Optimal solution: X =38,y =1

3x+by=10

Extreme Point Theorem  Any P problem with a nonempty: bounded
feasible region has an optimal solution; moreover, an optimalisolution can
— always be foundat an extreme point of the problem’s feasible region.

- m
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S possible outcomes in solving an LLP problem

I'rr

rVrau
has a finite optimalisolution, Which may no: e tunigue

unbounded: the oljective function of maximization
(mimimization) LLP problem s unbounded firom above
(oelow) oniits feasible region

infeasible: there are no points satistying all the constraints,
I.e. the constraints are contradictory
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The Simplex Method
r'rr

T'he classic method for solving [P problems;
one of the most Important algorithms ever inventead

Invented by George Dantzig in 1947

Based on the Iterative improvement idea:

(Generates a sequence of: adjacent points of the
problem’s feasible region with improving values of the
objective function until'no further Improvement Is
possible
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A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.



Standard form off [P problem
r'rr

rVra
muSt be a maximization problem

all'constraints (except the nonnegativity constraints) must be
In the form of linear equations With nonnegative right-hand

SIdles.
all'the variables must be required to be nonnegative

Thus, the general linear programming problem in standard
form with m constraints and n unknoewns (N = m)iIs

Maximize €y Xy + ...+ C %,
subject to a; X+ ...+t a. %, =0, 1=1,...m,
X205 ..., %, =20

: Every LLP problem can be represented inisuch form
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Example
rrr

rVrau
maximize 3x + 5y maximize sx + sy + 0u + Ov
subjectto x+ y<4 subjectto X+ y+ U =
X+3y<6 — X + 3y + V. =0
x=0, y=0 x=0, =0, u=0, v=0

\ariables u and v, transforming inegquality constraints 1nto
equality constrains, are called slack variables
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Basic feasible solutions
'rr

rVra
A basic solution to a system of:m linear equations in n unknowns

(n'= m) IS obtained by setting n — m Variables to 0-and solving the
resulting system to get the valties of: the other m variables. The

variables set to 0'are called nonbasic; the variables obtained by
solving the system are called basic.

A basic solutioniis called feasible ifralliits (basic) variables are
nonnegative.

Example X+ y+ U =4
X + 3y +\V =0

(0, 0; 4, 6) 1S basic feasible solution
(%, Y are nonbasic; u, . are basic)

There is a 1-1 correspondence between extreme points of LLP’s

:feasible region and its basic feasible solutions.
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Simplex Tableau
'y

rVrau
maximize z=sx + 5y + 0u + 0v
subject to X+ y+ U =4
X + 3y + V =0

x=0, y=0, u=0, v=0

pasic feasible solution

(0,0, 4, 6)

pasic
variables

objective row value ofiz at (0, 0, 4, 6)

14
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Outline ofithe Simplex Method

Step 0
Step 1

Step 2

Step 3

rVrau
[Initialization] Present a given LLP problem inistandard formiand
set up initial tablead.

Optimality test] If:all’ entries in the objective row are nonnegative —
stop: the tableau represents an optimal solution.

[Find entering variable] Select (the most) negative entry/ in the
objective row. Mark its column to indicate the
entering variable and the pivot column.

[Find departing variable] For each positive entry in the pivot column,

calculate the 0-ratio by dividing that row's entry/ in the rightmost column by
Its entry/ In the pivot column. (Ifithere are No positive entries inthe pivot
column — stop: the problem is unbounded.) Find the row with the smallest
0-ratio, mark this row to indicate the departing variable and the pivot row.

Step 4

[Form the next tableau] Divide all the entries in the pivot row by Its

entry inthe pivot column. Subtract from each ofithe other: rows, mcluding the
objective row, the new pivot row multiplied by the entry inithe pivot column
= ofithe row iniguestion. Replace the label of:the pivot row: by the variable's
\name ofithe pivot column and go back to Step 1.
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Example ofi Simplex Method Application

maximize z= 3% + 5y + 0u + Ov Step 4

SulJect to X+ i+ u SV oW
X+ 3y + V. =0
*x=0, V=0, u=0; V=0

/c

pivot = rOWpivot pivot, pivot

row *row

other

= Iow

other

—C

other , pivot pivot

X
2
3
1
3
4 B
3 3
t
basic feasible SOI. basic feasible SOI. basic feasible SOI.
(0, 0, 4, 6) (0,2, 2,0) (8,1,0,0)
-
Ty z=0 z=10 z=14
= iy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
s Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13



Notes on the Simplex Method
rrr

rVrau
Finding an initial basic feasible solution may pose a problem

Theoretical possibility of:cycling

Typical number of Iterations 1S between m and 3m, Where m Is
the number: ofiequality constraints in the standard form

\\/orse-case efficiency Is exponential

More recent interior-point algorithms suchi as Karmarkar’s
algorithm (1934) have polynomial worst-case efficiency and

-l nave performed competitively with the simplex method in

Ty cMIpITICal tests
:‘ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14



| Y

144

10.2 Maximum FElow Problem
'rr

Problem of:maximizing the flow of'a material throtgh a
transportation network (e.q., pipeling system, communications
OF transportation NEtWOrks)

Formally represented by a connected weighted digraph with n
vertices numbered from: 1 to n with the following properties:

contains exactly, one vertex with no entering edges, called
the source (numibered 1)

contains exactly one vertex with no leaving ecdges, called
the sink (numibered n)

has positive integer Weight u;; onieach directed edge (1),
called the edge capacity, Indicating the Uupper bound on
the amount of the material that can be sent from 1 'to |
thrrough this edge
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Example of Elow Network

Source

Sink

11
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Defimition ofia Elow
'rr

rVrau
A Tlow s an assignment of real nUMmBErS X;; to edges (1I;]) ofia
given network that satisfy the following:

flow-conservation requirements

T'he total'amount off material entering an imtermediate
Vertex must be equal to the total'amount of the material
leaving the vertex

Z xji = Z xij fOF I = 2,3,..., n'l
FGeE i) eE
capacity constraints

0'= Xx;; = u;; for-every edge (1)) € E

11
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Flow value and Maximum Elow Problem
'rr

rVrau

Since no material can be 1ost or added to by going through
Intermediate vertices ofithe network, the total amount ofithe
material’leaving the source must end up at the sink:

2 X = > Xin

FdpeE  ji(n)eE

'he value of the flow Is defined as the total outflow firom the
source (= the total inflow into the sink).

The maximum flow: problem is to find a flow of the largest
value (maximum: flow) for a given network.
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Maximum-Elow Preblem as LLP problem
r'rr

rVrau
Maximize V. = Z X
= (1)) e E
subject to

> Xi - xX; =0 forir=2,3.....,n-1
jfeE ji(ij)ekE

0<Xx:<

; for every edge (I,)) € &

11
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Augmenting Path (Ford-Fulkerson) Method

i1

I

Start with the zeroflow (X = 0'for every edge)

On each Iteration, try to find a flow-augmenting path firom
source to sink; which a path along which some additional
flow can e sent

If:a flow-augmenting pathiis found, adjust the flow along
the edges ofithis path to get a flow offincreased value and
try again

Ifino flow-augmenting path is found, the current oW IS
maximum

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20



Example 1

Augmenting path:
1-2 -3 —6
| ‘
b .
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Example 1 (cont.)

O

0/3

Augmenting path:
1 >4 -32 —>5—6

111
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Example 1 (maximum flow)

1/1

max flow value = 3

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Finding a flow-augmenting path
0 9 gp lll

1o find a flow-augmenting path for: a flow X, consider: paths from
source to sink in the underlying undirected graph N \Which any.
tWO consecutive VErtices I,j are either:

connected by a dlrected edge (I'to ) with some positive
Unused capacity r; — Xjj

KNown as forward edge (—)
O]
connected by a directed edge (J'to 1) with: positive flow x;;
known as backward edge (<)

Ifia flow-augmenting path is found, the current flow can e
INcreased by CUNILS Py INCreasIng x;; Dy r-on each forwarad edge
and decreasing x;; by ron each packward edge, Where

= min{; on alliforwardiedges, x; on all backward edges;

] J|
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Finding a flow-augmenting path (cont.)
I
Assuming the ecge capacities are INtegers, riIs a positive
INteger:

On each Iteration, the flow valtie increases by at least 1

Maximum: value'I1s bounded: by the sum ofithe capacities of
the edges leaving the source; nence the atigmenting-path
method has to stop after a finite nuMmEer: of iterations

The final flow is always maximum, its value doesn’t depend
0N a Sequence ofraugmenting paths used

11
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Performance degeneration ofi the method

Irr

rFrau

The augmenting-path method doesn’t prescribe a specific
wWay. for generating flow-atugmenting paths

Selecting a bad sequence ofraugmenting paths could impact
the method’s efficiency

Example 2

o/U

111

)
o/U w

0/1 U = large positive integer

©

o/U
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Example 2 (cont.)

o/U @ o/U 1/U @ o/U
TN N

O/U v O/U O/U v 1/U

(2) ©
u/U wu U &U

u/u y U/U 1/U v 1/U

Reguires 2U iterations to reach

maximum flow efivalue 21U
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Shortest-Augmenting-Path Algorithm '

rVrau
(Generate augmenting path withithe least numier: of: edges by
BES as follows.

Starting at the source, perform BES traversall by marking new
(unlabeled) vertices with two lalbels:

first label’= indicates the amount of: additional flow that
can be brought firom the source to the vertex being labeled

second label — indicates the vertex from which the vertex
being labeled was reached, with “+> or “—” added to the
second label to indicate whether: the vertex was reached via

a forward or backward edge
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\/ertex labeling '

'he source Is always labeled with co,-

All other: vertices are labeled as follows:

If:unlabeled vertex jii1s connected to the front vertex i of
the traversal queue by a directed edge firom I to jwith
POSItiVe Unused capacity i = Uy =X;; (forward edge);
vertex | is labeled with |17 where | = mingl;, 6}

If:unlabeled vertex j/iIs connected to the front Vertex i of
the traversal gueue by a directed edge firom j to with

positive flow X;; (backward edge), Vertex jiis labeled |15,
where | = mingli, X

11
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\/ertex labeling (cont.) '

rVra
Ifithe sink ends up being labeled, the current flow can be

augmented by the amount indicated by the sink’s first label

['he augmentation ofithe current flow Is performed along the
augmenting path traced by following the vertex second labels
from sink to source; the current flow guantities are increased
on the forward edges and decreased on the backward edges
ofi this path

Ifithe sink remains unlabeled after the traversal queue
pPecomes empty, the algorithm returns the current flow as
maximum and: stops
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Example: Shortest-Augmenting-Path Algorithm
rrr

0/3 0/1
Queue: 124356
T
0/3 0/1
3,1*
= .
-y Augment the flow by 2 (the sink’s first

Ty label) along the path 1—-2—3—6
o 31



Example (cont.)

Augment the flow by 1 (the sink’s first
label) along the path 1 -4—3+—2—5—6

111
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Example (cont.)

1/3 1/1
Queue: 14 _
T ’ =
"3/
1/3 1/1
2,1*
my No augmenting path (the sink is unlabeled)
‘h the current flow is maximum
: m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Shortest-augmenting-path algorithm
Input: A network with single source 1, single sink n, and
positive integer capacities u;; on its edges (¢, 7)
Output: A maximum flow x
assign z,; = 0 to every edge (4, 7) in the network
label the source with oc, — and add the source to the empty queue
while not Empty(Q) do
1 — Front(Q); Dequeue(Q)
for every edge from i to 7 do //forward edges
if 7 is unlabeled
Tij < Wiy — Lij
if Tij > 0
l; « min{l;,r;;}; label j with ;,*
Enqueue(Q,7)
for every edge from j to ¢ do //backward edges
if 7 is unlabeled
if Ty > 0
l; «— min{l;,z;;}; label j with [;, 27
Enqueue(Q, 7)
if the sink has been labeled
//augment along the augmenting path found
j <« n //start at the sink and move backwards using second labels
while 7 # 1 //the source hasn’t been reached
if the second label of vertex j is i+
Tij Ty + ln
else //the second label of vertex j is 4~
Tji — Zji — ln
erase all vertex labels except the ones of the source
reinitialize () with the source
return z //the current flow is maximum
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Time Efficiency

r'rr

rVrau
[ihe numiber of:augmenting paths needed by, the shortest-

augmenting-path algorithm never exceeds nmy/2, Where n
and m are the number: ofi Vertices and edges, respectively.

SInce the time required to find shortest atugmenting path by
preadth-first search is in O(n+m)=0(m) for networks
represented by their: adjacency lists, the time efficiency of
the shortest-augmenting-path algorlthm IS Int O (nNm?) for.
this representation

More efficient algorithms have been found that can run in
close to ©(nm) time, but these algorithms don’t fall into the
Iiterative-improvement paradigm
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Defimition ofia Cut
'r

rVrau
[Let X e a set of Vertices in a network that includes its source but
does not include its sink; and let X, the complement of X, be the
rest of the vertices including the sink. ‘The cut induced by this
partition of the Vertices Is the set of all the edges with a tail in X

and a head in X.
Capacity of:a cutis defined as the sum of:capacities ofithe ecges
that compose the cut.

We’ll denote a cut and its capacity by C(X,i) and c(X,)6

Note that ifiall the edges ofia cut were deleted from the
network; there would e no directed path from source to sink

Minimum cut IS a cut ofithe smallest capacity in a given

—y  N1ETWO rk
F‘

oy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Examples of network cuts
rrr

If X = {1} and X = {2,3,4,5,6}, C(X,X) = {(1,2), (1,4}, c=5
If X ={1,2,3,4,5} and X = {6}, C(X.X) = {(3,6), (5.6)}, c =6
If: X = {1,2,4% and X ={3,5,6}, C(X,X) = {(2,3), 2,5), (4,3)}, c = 9

111
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Max-Flow Min-Cut Ttheorem Y,

The value of maximum flow in a network is equal'to'the = = ®
capacity ofiits minimum cut

[he shortest augmenting path algorithm yields both a
maximum flow and a minimum cut:

maximumi flow IS the final flow produced by the
algorithm

minimumicut 1s formed by all the edges from the labeled
vertices to unlabeled vertices on the last iteration of the
algorithm

all the edges from the labeled to unlabeled vertices are
full] 1.e., therr flow amounts are equal to the edge
capacities, while all the edges frrom the unlabeled to

labeled VEFrtices, 1fiany, have zero flow amounts on them
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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10.3 Bipartite Grapns
Iy

rVrau
Bipartite graph: a graph Whose Vertices can be partitioned into
two disjoint sets'\/ and U, not necessarily of the same Size, So
that every ecdge connects a vertex in \/ to a vertex in U

A graph is bipartite if:and only if It does not have a cycle of an
odd length

111
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Bipartite Graphs (cont.) et

rVra
A bipartite graph is 2-colorable: the vertices can be colored

IN tWo colOKS SO that every edge has Its VEFtices colored
differently.

111
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Matching in a Graph
I'rs

rFrau

A matching infa graph is a suset oft 1ts ecges With the property
that no two edges share a Vertex

a matching
in this graph
M = {(4.8), (5,9)}

A maximum (or maximum cardinality) matching is a matching
with the largest numiber: ofiecges
alway/s exists

not always unique

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Eree Vertices and Maximum I\/Iatching’”

rFrau

A matched
vertex

A free
vertex

For a given matching M, a vertex is called free (or unmatched) if
1L 1S not an endpoint ofiany. edge 1n \M; otherwise, a VErtex Is said

to e matchea
o [T every vertex Is matched, then Miis a maximum: matching
o [T there are unmatched or free vertices, then Mimay. be able to be improved

_ . \/\/e can immediately increase a matching by adding an edge connecting two
oy free \,/Ae [(:,[\,i%rle‘§nt(§dl%fibn(t:lc'>’t@ Daesl,?&\éeﬁ?nalysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Augmenting RPaths and Augmentation HE

An augmenting path for a matching Miis a path from a firee vertex
In'\/ to a frree vertex in Uwhose edges alternate between edges
not in M and edges in M
Tihe length of:an augmenting pathis always odd

Adding torM the odd numibered pathiedges and deleting from It the even
numibered pathiedges increases the matching size by 1 (augmentation)

One-edge path between two free VErtices IS special case ofraugmenting path

A. Levitin “Introduction 18 0 ©2012 Pearson
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- m Augmentatlon along path 2,6,1,7
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Augmenting Paths (another example)

Augmentation along
3,8,4,9,510

o Matching on the right Is maximum (perfect matching)

o Theorem A matching Mis maximumiifand only ifithere exists

No augmenting path with respect to M

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Augmenting Path Method (template) '

rFrau

Start with some initial matching
e.0., the empty Set

Find an augmenting path and augment the current
matching along that path

€.0., using breadth-first search like method

\When noaugmenting path can be found, terminate and
return the last matching, Which Is maximum

11
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BES-based Atugmenting Path Algorlthr;]"

rVrau
Initialize gueue @ with all*free vertices in one of:the sets (say. \/)

\Whirle @1s not empty, delete front vertex w and:label every
unlabeled vertex u adjacent to \w as follows:

Case 1 (W 1sin \/)
Iffuris free, atigment the matching along the pathn ending at u
Py moving backwards until a free vertex in \/ Is reached.
After that, erase all labels and reinitialize @ with all'the
vertices in V. that are still free
If:uIs matched (not with w), label uwith w and engueue u

Case 2 (W 1siin U) Label'its matching mate v with w and
enqueue Vv

After Q becomes empty, return the last matching, WNIChis
maximum

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Example (revisited)

Initial Graph Resulting Graph

Queue: 123

Each vertex is labeled with the vertex it was reached from. Queue deletions are
indicated by arrows. The free vertex found in U is shaded and labeled for clarity;
the new matching obtained by the augmentation is shown on the next slide.

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 47



| Y

Example (cont.)

Initial Graph

- m
-y
- m

Resulting Graph

Queue:236814 Augment
Pt from 7

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
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Example (cont.)

Initial Graph Resulting Graph
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Example: maximum matching found

maximum
matching

RIS matching IS maximumiSINce there are No remaining
free vertices in \/ (the queue 1s empty)

Note that this matching differs firom the maximum

matching found earlier

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Maximum-matching algorithm for bipartite graphs
Input: A bipartite graph G = (V. U, E)
Output: A maximum-cardinality matching M in the input graph
initialize set M of edges with some valid matching (e.g.. the empty set)
initialize queue Q with all the free vertices in V' (in any order)
while not Empiy(Q) do
w «— Front(Q); Degueue(Q)
ifweV
for every vertex u adjacent to w do
if u is free
//augment
M — MU (w,u)
ve—w
while v is labeled do
u — vertex indicated by v's label: M — M — (v,u)
v «— vertex indicated by u's label: M — M U (v, u)
remove all vertex labels
reinitialize Q with all free vertices in V
break //exit the for loop
else //u is matched
if (w,u) € M and u is unlabeled
label u with w
FEnqueue(Q.u)
else //w € U (and matched)
label the mate v of w with “w)
Enqueue(Q,v)

return M //current matching is maximum

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Notes on Maximum: Matching Algorithm

r'rr

rVrau
Each iteration (except the last) matches two free Vertices (one
each from\/ and Uj. Therefore, the nuMBEF of iterations
cannot exceed | n/2]+ 1, where n is the number: of vertices in
the graph. Tihe time spent on each iteration Is in O(n+m),
Where m Is the number ofiedges in the graph. Hence, the time
efficiency 1s in O(n(n+m))

1This can be improved to O(sgrt(n)(n+m)) by combining
multiple Iterations to maximize the number: of edges added to
matching M 1n eachisearch

Finding a maximum matching in an arbitrary graph Is much
more difficult; but the problem was solved in 1965 by Jack
Edmonds
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Conversion to Max-Flow Problem

11 1 1

Add a source and a sink; direct edges (With:unit capacity)

from the source to the vertices ofi \/ and frrom the Vertices

ofi U to the sink

: Direct all'edges frrom \V/ tor Wrwith tnit capacity

m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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10.4' Stable Marriage Problem
rrr

rVrau
Thereisaset Y = {my,....m,; of: n men and a set X = {W,...,W, | of

nwomen. Each man has a ranking list ofithe women, and
each woman has a ranking list of:the men (With no ties 1n these
lISLS).

A marriage matching M is a set of n pairs (m;, W)

A pair (m, W) Is said to be a blocking pair for matching M if man

m and woman W are not matched in M but prefer each other
to therr mates i M.

A marriage matching M Is called stable 1fithere 1s no blocking
pair for it; otherwise, it’s called unstable.

['he stable marriage problem is to find a stable marriage
matching for men’s and women’s given preferences.

144
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Instance ofithe Stable Marriage Problem
I
An instance of: the stable marriage problem can e specified

either by two sets of preference lists or by a ranking matrix, as in
the example below.

men’s preferences women’s preferences
1st 2nd 3rd 1st 2nd 3rd
Bob: LLea Ann Sue Ann: Jim T'om Bob
Jim: Lea Sue Ann [Lea: Tom Bob Jim
Tom: Sue lLea Ann Sue: Jim Tom Bob

ranking matrix
Ann Lea Sue
Bob 23 1.2 33

Jm 3,1 13 2,1
: Tom 32 21 12 {(Bob, Ann)" (Jim, Sue) (‘Tom, [Lea)} IS stable

|
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Stable Marriage Algorithm: (Gale-Shapley) I

rVra
Step 0 Start with all the men and Wwomen being free

Step L While there are free men, arbitrarily select one of them
and do the following:
Proposal’ The selected free man m proposes to w, the
next woman on his preference list

Response 1w is free, she accepts the proposal to be
matched with m. Ifishe IS not free, sne compares m With
ner current mate. Ifishe prefers m to nim, she accepts
m’s proposal, making her former mate free; otherwise,
she simply rejects m’s proposal, leaving m free

Step 2 Return the set ofin matched pairs

111
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Example

Free men:
Bob, Jim, Tom

Free men:
Jim, Tom

111

Ann | Lea | Sue
Bob | 23 | 1,2 [ 33
Jim | 3.1 1,3 2,1
Tom | 3,2 | 2,1 1,2

Ann | Lea | Sue
Bob | 23 | 12 | 33
Jm [ 31 | 13 | 21
Tom| 2 | 21 [ 12

Irr

rFrau

Bob proposed to LLea
[_ea accepted

Jim proposed to [_ea
[_ea rejected

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson
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Example (cont.) ’PP

rFrau

Ann | LLea | Sue

2,3 1,2 3,3 :
2oy ’ ’ ’ Jim proposed to Sue

FEree men:
Jim, Tom Jm | 31 | 13 | 21 SUe accepted
Tom | 3,2 2,1 1,2
Anni | LLea | Sue
Bob | 23 | 12 | 33
Free men: Jlom proposed to Sue
Jom Jim | 31 1,3 2.1 Sue rejected
Tom | 3,2 2,1 | 1.2
4‘
ﬂ‘
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Example (cont.) ’PP

Yy V' u
Ann | LLea | Sue
Bob | 2,3 1,2 3,3
Free men: Tom proposed to L.ea
Tom Jim | 3,1 1,3 2.1 [.ea replaced Bob
wath Tom
fom | 3,2 2.1 1,2
Ann | LLea | Sue
Bob | 2,3 1,2 3,3
Free men: Bob proposed to Ann

Bob Jim | 31 1,3 2.1 Ann accepted

Tom| 32 | 21 | 12
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Analysis of the Gale-Shapley Algorithnl]"

rVrau
Tihe algorithm terminates after no more than n? iterations with
a stable marriage output

1ihe stable matching produced by the algorithm is always
man-optmal: each man gets the highest rank woman on his list
under any stable marriage. ©ne can obtain the woman-
optimal matching by making Women propose to men

A man (Woman) optimal‘ matching I1s unigue for a given set of
participant preferences

I'he stable marriage problem has practical applications such
as matching medical-school graduates with hospitals for
resicdency training
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