
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Chapter 10: Iterative Improvement

Algorithm design technique for solving optimization problems

Start with a feasible solution

Repeat the following step until no improvement can be found:

• change the current feasible solution to a feasible solution with a better
value of the objective function

Return the last feasible solution as optimal

Note: Typically, a change in a current solution is “small” (local
search)

Major difficulty: Local optimum vs. global optimum

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Important Examples

simplex method

Ford-Fulkerson algorithm for maximum flow problem

maximum matching of graph vertices

Gale-Shapley algorithm for the stable marriage problem

local search heuristics

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

10.1 Linear Programming

Linear programming (LP) problem is to optimize a linear function

of several variables subject to linear constraints:

maximize (or minimize) c1 x1 + ...+ cn xn

subject to ai1x1+ ...+ ain xn ≤ (or ≥ or =) bi , i = 1,...,m

x1 ≥ 0, ... , xn ≥ 0

The function z = c1 x1 + ...+ cn xn is called the objective function;

constraints x1 ≥ 0, ... , xn ≥ 0 are called nonnegativity constraints

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Example

maximize 3x + 5y

subject to x + y ≤ 4

x + 3y ≤ 6

x ≥ 0, y ≥ 0

x

y

(0, 2)

(0, 0) (4, 0)

(3, 1)

x + y = 4

x + 3y = 6

Feasible region is the

set of points defined

by the constraints

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Geometric solution

maximize 3x + 5y

subject to x + y ≤ 4

x + 3y ≤ 6

x ≥ 0, y ≥ 0

Optimal solution: x = 3, y = 1

Extreme Point Theorem Any LP problem with a nonempty bounded

feasible region has an optimal solution; moreover, an optimal solution can

always be found at an extreme point of the problem's feasible region.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

3 possible outcomes in solving an LP problem

has a finite optimal solution, which may no be unique

unbounded: the objective function of maximization

(minimization) LP problem is unbounded from above

(below) on its feasible region

infeasible: there are no points satisfying all the constraints,

i.e. the constraints are contradictory

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

The Simplex Method

The classic method for solving LP problems;

one of the most important algorithms ever invented

Invented by George Dantzig in 1947

Based on the iterative improvement idea:

Generates a sequence of adjacent points of the

problem’s feasible region with improving values of the

objective function until no further improvement is

possible

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Standard form of LP problem

must be a maximization problem

all constraints (except the nonnegativity constraints) must be
in the form of linear equations with nonnegative right-hand
sides.

all the variables must be required to be nonnegative

Thus, the general linear programming problem in standard

form with m constraints and n unknowns (n ≥ m) is

maximize c1 x1 + ...+ cn xn

subject to ai1x1+ ...+ ain xn = bi , i = 1,...,m,
x1 ≥ 0, ... , xn ≥ 0

Every LP problem can be represented in such form

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Example

maximize 3x + 5y maximize 3x + 5y + 0u + 0v

subject to x + y ≤ 4 subject to x + y + u = 4

x + 3y ≤ 6 x + 3y + v = 6

x≥0, y≥0 x≥0, y≥0, u≥0, v≥0

Variables u and v, transforming inequality constraints into

equality constrains, are called slack variables

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Basic feasible solutions

A basic solution to a system of m linear equations in n unknowns
(n ≥ m) is obtained by setting n – m variables to 0 and solving the
resulting system to get the values of the other m variables. The
variables set to 0 are called nonbasic; the variables obtained by
solving the system are called basic.

A basic solution is called feasible if all its (basic) variables are
nonnegative.

Example x + y + u = 4

x + 3y + v = 6

(0, 0, 4, 6) is basic feasible solution

(x, y are nonbasic; u, v are basic)

There is a 1-1 correspondence between extreme points of LP’s
feasible region and its basic feasible solutions.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Simplex Tableau

maximize z = 3x + 5y + 0u + 0v

subject to x + y + u = 4

x + 3y + v = 6

x≥0, y≥0, u≥0, v≥0

basic

variables

objective row

basic feasible solution

(0, 0, 4, 6)

1 1 1 0 4

1 3 0 1 6

3 5 0 0 0

x y u v

u

v

value of z at (0, 0, 4, 6)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Outline of the Simplex Method

Step 0 [Initialization] Present a given LP problem in standard form and
set up initial tableau.

Step 1 [Optimality test] If all entries in the objective row are nonnegative —
stop: the tableau represents an optimal solution.

Step 2 [Find entering variable] Select (the most) negative entry in the
objective row. Mark its column to indicate the
entering variable and the pivot column.

Step 3 [Find departing variable] For each positive entry in the pivot column,
calculate the θ-ratio by dividing that row's entry in the rightmost column by
its entry in the pivot column. (If there are no positive entries in the pivot
column — stop: the problem is unbounded.) Find the row with the smallest
θ-ratio, mark this row to indicate the departing variable and the pivot row.

Step 4 [Form the next tableau] Divide all the entries in the pivot row by its
entry in the pivot column. Subtract from each of the other rows, including the
objective row, the new pivot row multiplied by the entry in the pivot column
of the row in question. Replace the label of the pivot row by the variable's
name of the pivot column and go back to Step 1.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Example of Simplex Method Application

1 1 1 0 4

1 3 0 1 6

3 5 0 0 0

x y u v

u

v

maximize z = 3x + 5y + 0u + 0v

subject to x + y + u = 4

x + 3y + v = 6

x≥0, y≥0, u≥0, v≥0

2

3
0 1

1

3
2

1

3
1 0

1

3
2

4

3
0 0

5

3
10

x y u v

u

y

maximize z = 3x + 5y + 0u + 0v Step 4

subject to x + y + u = 4

x + 3y + v = 6

x≥0, y≥0, u≥0, v≥0

basic feasible sol.
(0, 0, 4, 6)

z = 0

basic feasible sol.
(0, 2, 2, 0)

z = 10

basic feasible sol.
(3, 1, 0, 0)

z = 14

1 0
3

2

1

2
3

0 1
1

2
1

2
1

0 0 2 1 14

x y u v

x

y

pivotpivototherotherother

pivotpivotpivotpivot

rowcrowrow

crowrow

*

/

,

,

−=

=

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Notes on the Simplex Method

Finding an initial basic feasible solution may pose a problem

Theoretical possibility of cycling

Typical number of iterations is between m and 3m, where m is

the number of equality constraints in the standard form

Worse-case efficiency is exponential

More recent interior-point algorithms such as Karmarkar’s

algorithm (1984) have polynomial worst-case efficiency and

have performed competitively with the simplex method in

empirical tests

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

10.2 Maximum Flow Problem

Problem of maximizing the flow of a material through a
transportation network (e.g., pipeline system, communications
or transportation networks)

Formally represented by a connected weighted digraph with n
vertices numbered from 1 to n with the following properties:

• contains exactly one vertex with no entering edges, called
the source (numbered 1)

• contains exactly one vertex with no leaving edges, called
the sink (numbered n)

• has positive integer weight uij on each directed edge (i.j),
called the edge capacity, indicating the upper bound on
the amount of the material that can be sent from i to j
through this edge

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

Example of Flow Network

1 2 3

4

5

6
2 2

3
1

5

3
4

Source

Sink

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

Definition of a Flow

A flow is an assignment of real numbers xij to edges (i,j) of a

given network that satisfy the following:

flow-conservation requirements

The total amount of material entering an intermediate

vertex must be equal to the total amount of the material

leaving the vertex

capacity constraints

0 ≤ xij ≤ uij for every edge (i,j)  E

∑ xji = ∑ xij for i = 2,3,…, n-1

j: (j,i) є E j: (i,j) є E

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

Flow value and Maximum Flow Problem

Since no material can be lost or added to by going through

intermediate vertices of the network, the total amount of the

material leaving the source must end up at the sink:

∑ x1j = ∑ xjn

The value of the flow is defined as the total outflow from the

source (= the total inflow into the sink).

The maximum flow problem is to find a flow of the largest

value (maximum flow) for a given network.

j: (1,j) є E j: (j,n) є E

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Maximum-Flow Problem as LP problem

Maximize v = ∑ x1j

j: (1,j)  E

subject to

∑ xji - ∑ xij = 0 for i = 2, 3,…,n-1
j: (j,i)  E j: (i,j)  E

0 ≤ xij ≤ uij for every edge (i,j)  E

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Augmenting Path (Ford-Fulkerson) Method

Start with the zero flow (xij = 0 for every edge)

On each iteration, try to find a flow-augmenting path from

source to sink, which a path along which some additional

flow can be sent

If a flow-augmenting path is found, adjust the flow along

the edges of this path to get a flow of increased value and

try again

If no flow-augmenting path is found, the current flow is

maximum

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Example 1

1 2 3

4

5

6
0/2 0/2

0/3
0/1

0/5

0/3 0/4

Augmenting path:

1→2 →3 →6

xij/uij

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

1 2 3

4

5

6
2/2 2/2

0/3
0/1

2/5

0/3 0/4

Augmenting path:

1 →4 →3←2 →5 →6

Example 1 (cont.)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

1 2 3

4

5

6
2/2 2/2

1/3
1/1

1/5

1/3 1/4

max flow value = 3

Example 1 (maximum flow)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

Finding a flow-augmenting path

To find a flow-augmenting path for a flow x, consider paths from
source to sink in the underlying undirected graph in which any
two consecutive vertices i,j are either:

• connected by a directed edge (i to j) with some positive
unused capacity rij = uij – xij

– known as forward edge (→)

OR

• connected by a directed edge (j to i) with positive flow xji

– known as backward edge (←)

If a flow-augmenting path is found, the current flow can be
increased by r units by increasing xij by r on each forward edge
and decreasing xji by r on each backward edge, where

r = min {rij on all forward edges, xji on all backward edges}

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

Finding a flow-augmenting path (cont.)

Assuming the edge capacities are integers, r is a positive

integer

On each iteration, the flow value increases by at least 1

Maximum value is bounded by the sum of the capacities of

the edges leaving the source; hence the augmenting-path

method has to stop after a finite number of iterations

The final flow is always maximum, its value doesn’t depend

on a sequence of augmenting paths used

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

Performance degeneration of the method

The augmenting-path method doesn’t prescribe a specific

way for generating flow-augmenting paths

Selecting a bad sequence of augmenting paths could impact

the method’s efficiency

Example 2

4

2

1 3

0/U 0/U

0/1

0/U0/U

U = large positive integer

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

Example 2 (cont.)

4

2

1 3

U/U U/U

0/1

U/UU/U

4

2

1 3

0/U 0/U

0/1

0/U0/U
4

2

1 3

1/U 0/U

1/1

1/U0/U

4

2

1 3

1/U 1/U

0/1

1/U1/U

1→2→4→3

1→4←2→3

V=1

V=2

V=2U

● ● ●

Requires 2U iterations to reach

maximum flow of value 2U

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

Shortest-Augmenting-Path Algorithm

Generate augmenting path with the least number of edges by

BFS as follows.

Starting at the source, perform BFS traversal by marking new

(unlabeled) vertices with two labels:

• first label – indicates the amount of additional flow that

can be brought from the source to the vertex being labeled

• second label – indicates the vertex from which the vertex

being labeled was reached, with “+” or “–” added to the

second label to indicate whether the vertex was reached via

a forward or backward edge

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

Vertex labeling

The source is always labeled with ∞,-

All other vertices are labeled as follows:

• If unlabeled vertex j is connected to the front vertex i of

the traversal queue by a directed edge from i to j with

positive unused capacity rij = uij –xij (forward edge),

vertex j is labeled with lj,i
+, where lj = min{li, rij}

• If unlabeled vertex j is connected to the front vertex i of

the traversal queue by a directed edge from j to i with

positive flow xji (backward edge), vertex j is labeled lj,i
-,

where lj = min{li, xji}

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 30

Vertex labeling (cont.)

If the sink ends up being labeled, the current flow can be
augmented by the amount indicated by the sink’s first label

The augmentation of the current flow is performed along the
augmenting path traced by following the vertex second labels
from sink to source; the current flow quantities are increased
on the forward edges and decreased on the backward edges
of this path

If the sink remains unlabeled after the traversal queue
becomes empty, the algorithm returns the current flow as
maximum and stops

31

Example: Shortest-Augmenting-Path Algorithm

Queue: 1 2 4 3 5 6
↑ ↑ ↑ ↑

Augment the flow by 2 (the sink’s first

label) along the path 1→2→3→6

1 2 3

4

5

6
0/2 0/2

0/3 0/1

0/5

0/3 0/4

1 2 3

4

5

6
0/2 0/2

0/3 0/1

0/5

0/3 0/4

∞,- 2,1+

2,2+

2,3+

2,2+

3,1+

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 32

1 2 3

4

5

6
2/2 2/2

0/3 0/1

2/5

0/3 0/4

1 2 3

4

5

6
2/2 2/2

0/3 0/1

2/5

0/3 0/4

∞,- 1,3-

1,2+

1,5+

1,4+

3,1+

Augment the flow by 1 (the sink’s first

label) along the path 1→4→3←2→5→6

Queue: 1 4 3 2 5 6
↑ ↑ ↑ ↑ ↑

Example (cont.)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 33

1 2 3

4

5

6
2/2 2/2

1/3 1/1

1/5

1/3 1/4

1 2 3

4

5

6
2/2 2/2

1/3 1/1

1/5

1/3 1/4

∞,-

2,1+

No augmenting path (the sink is unlabeled)

the current flow is maximum

Queue: 1 4
↑ ↑

Example (cont.)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 34

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 35

Time Efficiency

The number of augmenting paths needed by the shortest-
augmenting-path algorithm never exceeds nm/2, where n
and m are the number of vertices and edges, respectively

Since the time required to find shortest augmenting path by
breadth-first search is in O(n+m)=O(m) for networks
represented by their adjacency lists, the time efficiency of
the shortest-augmenting-path algorithm is in O(nm2) for
this representation

More efficient algorithms have been found that can run in
close to O(nm) time, but these algorithms don’t fall into the
iterative-improvement paradigm

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 36

Definition of a Cut

Let X be a set of vertices in a network that includes its source but
does not include its sink, and let X, the complement of X, be the
rest of the vertices including the sink. The cut induced by this
partition of the vertices is the set of all the edges with a tail in X
and a head in X.

Capacity of a cut is defined as the sum of capacities of the edges
that compose the cut.

We’ll denote a cut and its capacity by C(X,X) and c(X,X)

Note that if all the edges of a cut were deleted from the

network, there would be no directed path from source to sink

Minimum cut is a cut of the smallest capacity in a given
network

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 37

Examples of network cuts

If X = {1} and X = {2,3,4,5,6}, C(X,X) = {(1,2), (1,4)}, c = 5

If X ={1,2,3,4,5} and X = {6}, C(X,X) = {(3,6), (5,6)}, c = 6

If X = {1,2,4} and X ={3,5,6}, C(X,X) = {(2,3), (2,5), (4,3)}, c = 9

1 2 3

4

5

6
2 2

3
1

5

3
4

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 38

The value of maximum flow in a network is equal to the

capacity of its minimum cut

The shortest augmenting path algorithm yields both a

maximum flow and a minimum cut:

• maximum flow is the final flow produced by the

algorithm

• minimum cut is formed by all the edges from the labeled

vertices to unlabeled vertices on the last iteration of the

algorithm

• all the edges from the labeled to unlabeled vertices are

full, i.e., their flow amounts are equal to the edge

capacities, while all the edges from the unlabeled to

labeled vertices, if any, have zero flow amounts on them

Max-Flow Min-Cut Theorem

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 39

10.3 Bipartite Graphs

4 5

109876

1 2 3V

U

Bipartite graph: a graph whose vertices can be partitioned into

two disjoint sets V and U, not necessarily of the same size, so

that every edge connects a vertex in V to a vertex in U

A graph is bipartite if and only if it does not have a cycle of an

odd length

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 40

Bipartite Graphs (cont.)

4 5

109876

1 2 3V

U

A bipartite graph is 2-colorable: the vertices can be colored

in two colors so that every edge has its vertices colored

differently

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 41

Matching in a Graph

4 5

109876

1 2 3V

U

A matching in a graph is a subset of its edges with the property

that no two edges share a vertex

a matching

in this graph

M = {(4,8), (5,9)}

A maximum (or maximum cardinality) matching is a matching

with the largest number of edges

• always exists

• not always unique

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 42

Free Vertices and Maximum Matching

4 5

109876

1 2 3V

U

A matching

in this graph (M)

A matched

vertex

A free

vertex

For a given matching M, a vertex is called free (or unmatched) if

it is not an endpoint of any edge in M; otherwise, a vertex is said

to be matched

• If every vertex is matched, then M is a maximum matching

• If there are unmatched or free vertices, then M may be able to be improved

• We can immediately increase a matching by adding an edge connecting two

free vertices (e.g., (1,6) above)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 43

Augmenting Paths and Augmentation

4 5

1098

3V

U

An augmenting path for a matching M is a path from a free vertex
in V to a free vertex in U whose edges alternate between edges
not in M and edges in M
The length of an augmenting path is always odd

Adding to M the odd numbered path edges and deleting from it the even
numbered path edges increases the matching size by 1 (augmentation)

One-edge path between two free vertices is special case of augmenting path

Augmentation along path 2,6,1,7

1 2

76

4 5

1098

3V

U

1 2

76

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 44

Augmenting Paths (another example)

109876

1 2 3V

U

Augmentation along

3, 8, 4, 9, 5, 10

4 5

109876

1 2 3V

U

4 5

• Matching on the right is maximum (perfect matching)

• Theorem A matching M is maximum if and only if there exists

no augmenting path with respect to M

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 45

Augmenting Path Method (template)

Start with some initial matching

• e.g., the empty set

Find an augmenting path and augment the current

matching along that path

• e.g., using breadth-first search like method

When no augmenting path can be found, terminate and

return the last matching, which is maximum

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 46

BFS-based Augmenting Path Algorithm

Initialize queue Q with all free vertices in one of the sets (say V)

While Q is not empty, delete front vertex w and label every
unlabeled vertex u adjacent to w as follows:

Case 1 (w is in V)
If u is free, augment the matching along the path ending at u
by moving backwards until a free vertex in V is reached.
After that, erase all labels and reinitialize Q with all the
vertices in V that are still free
If u is matched (not with w), label u with w and enqueue u

Case 2 (w is in U) Label its matching mate v with w and
enqueue v

After Q becomes empty, return the last matching, which is
maximum

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 47

Example (revisited)

4 5

109876

1 2 3V

U

4 5

109876

1 2 3V

U

Queue: 1 2 3

1

Queue: 1 2 3 Augment

from 6

Initial Graph Resulting Graph

Each vertex is labeled with the vertex it was reached from. Queue deletions are

indicated by arrows. The free vertex found in U is shaded and labeled for clarity;

the new matching obtained by the augmentation is shown on the next slide.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 48

Example (cont.)

4 5

109876

1 2 3V

U

4 5

109876

1 2 3V

U

Queue: 2 3

2

Queue: 2 3 6 8 1 4 Augment

from 7

Initial Graph Resulting Graph

3

86

1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 49

Example (cont.)

4 5

109876

1 2 3V

U

4 5

109876

1 2 3V

U

Queue: 3 Queue: 3 6 8 2 4 9 Augment

from 10

Initial Graph Resulting Graph
8

3 3

6

4 4

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 50

Example: maximum matching found

This matching is maximum since there are no remaining
free vertices in V (the queue is empty)

Note that this matching differs from the maximum
matching found earlier

maximum

matching

4 5

109876

1 2 3V

U

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 51

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 52

Notes on Maximum Matching Algorithm

Each iteration (except the last) matches two free vertices (one
each from V and U). Therefore, the number of iterations
cannot exceed n/2 + 1, where n is the number of vertices in
the graph. The time spent on each iteration is in O(n+m),
where m is the number of edges in the graph. Hence, the time
efficiency is in O(n(n+m))

This can be improved to O(sqrt(n)(n+m)) by combining
multiple iterations to maximize the number of edges added to
matching M in each search

Finding a maximum matching in an arbitrary graph is much
more difficult, but the problem was solved in 1965 by Jack
Edmonds

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 53

Conversion to Max-Flow Problem

Add a source and a sink, direct edges (with unit capacity)
from the source to the vertices of V and from the vertices
of U to the sink

Direct all edges from V to U with unit capacity

V

U

s

t

4 5

10987

1 2 3

6

1

1

1 1 1 1
1

1

1

1

1
1 1

1
1

1 1 1 1 1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 54

10.4 Stable Marriage Problem

There is a set Y = {m1,…,mn} of n men and a set X = {w1,…,wn} of
n women. Each man has a ranking list of the women, and
each woman has a ranking list of the men (with no ties in these
lists).

A marriage matching M is a set of n pairs (mi, wj).

A pair (m, w) is said to be a blocking pair for matching M if man
m and woman w are not matched in M but prefer each other
to their mates in M.

A marriage matching M is called stable if there is no blocking
pair for it; otherwise, it’s called unstable.

The stable marriage problem is to find a stable marriage
matching for men’s and women’s given preferences.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 55

Instance of the Stable Marriage Problem

An instance of the stable marriage problem can be specified
either by two sets of preference lists or by a ranking matrix, as in
the example below.

men’s preferences women’s preferences

1st 2nd 3rd 1st 2nd 3rd

Bob: Lea Ann Sue Ann: Jim Tom Bob

Jim: Lea Sue Ann Lea: Tom Bob Jim

Tom: Sue Lea Ann Sue: Jim Tom Bob

ranking matrix

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

{(Bob, Ann) (Jim, Lea) (Tom, Sue)} is unstable

{(Bob, Ann) (Jim, Sue) (Tom, Lea)} is stable

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 56

Stable Marriage Algorithm (Gale-Shapley)

Step 0 Start with all the men and women being free

Step 1 While there are free men, arbitrarily select one of them
and do the following:
Proposal The selected free man m proposes to w, the
next woman on his preference list

Response If w is free, she accepts the proposal to be
matched with m. If she is not free, she compares m with
her current mate. If she prefers m to him, she accepts
m’s proposal, making her former mate free; otherwise,
she simply rejects m’s proposal, leaving m free

Step 2 Return the set of n matched pairs

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 57

Example

Free men:

Bob, Jim, Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Bob proposed to Lea

Lea accepted

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Jim proposed to Lea

Lea rejected

Free men:

Jim, Tom

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 58

Example (cont.)

Free men:

Jim, Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Jim proposed to Sue

Sue accepted

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Tom proposed to Sue

Sue rejected

Free men:

Tom

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 59

Example (cont.)

Free men:

Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Tom proposed to Lea

Lea replaced Bob

with Tom

Ann Lea Sue

Bob 2,3 1,2 3,3

Jim 3,1 1,3 2,1

Tom 3,2 2,1 1,2

Bob proposed to Ann

Ann accepted

Free men:

Bob

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 10 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 60

Analysis of the Gale-Shapley Algorithm

The algorithm terminates after no more than n2 iterations with
a stable marriage output

The stable matching produced by the algorithm is always
man-optimal: each man gets the highest rank woman on his list
under any stable marriage. One can obtain the woman-
optimal matching by making women propose to men

A man (woman) optimal matching is unique for a given set of
participant preferences

The stable marriage problem has practical applications such
as matching medical-school graduates with hospitals for
residency training

	Slide 1: Chapter 10: Iterative Improvement
	Slide 2: Important Examples
	Slide 3: 10.1 Linear Programming
	Slide 4: Example
	Slide 5: Geometric solution
	Slide 6: 3 possible outcomes in solving an LP problem
	Slide 7: The Simplex Method
	Slide 8: Standard form of LP problem
	Slide 9: Example
	Slide 10: Basic feasible solutions
	Slide 11: Simplex Tableau
	Slide 12: Outline of the Simplex Method
	Slide 13: Example of Simplex Method Application
	Slide 14: Notes on the Simplex Method
	Slide 15: 10.2 Maximum Flow Problem
	Slide 16: Example of Flow Network
	Slide 17: Definition of a Flow
	Slide 18: Flow value and Maximum Flow Problem
	Slide 19: Maximum-Flow Problem as LP problem
	Slide 20: Augmenting Path (Ford-Fulkerson) Method
	Slide 21: Example 1
	Slide 22: Example 1 (cont.)
	Slide 23: Example 1 (maximum flow)
	Slide 24: Finding a flow-augmenting path
	Slide 25: Finding a flow-augmenting path (cont.)
	Slide 26: Performance degeneration of the method
	Slide 27: Example 2 (cont.)
	Slide 28: Shortest-Augmenting-Path Algorithm
	Slide 29: Vertex labeling
	Slide 30: Vertex labeling (cont.)
	Slide 31: Example: Shortest-Augmenting-Path Algorithm
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Time Efficiency
	Slide 36: Definition of a Cut
	Slide 37: Examples of network cuts
	Slide 38
	Slide 39: 10.3 Bipartite Graphs
	Slide 40: Bipartite Graphs (cont.)
	Slide 41: Matching in a Graph
	Slide 42: Free Vertices and Maximum Matching
	Slide 43: Augmenting Paths and Augmentation
	Slide 44: Augmenting Paths (another example)
	Slide 45: Augmenting Path Method (template)
	Slide 46: BFS-based Augmenting Path Algorithm
	Slide 47: Example (revisited)
	Slide 48: Example (cont.)
	Slide 49: Example (cont.)
	Slide 50: Example: maximum matching found
	Slide 51
	Slide 52: Notes on Maximum Matching Algorithm
	Slide 53: Conversion to Max-Flow Problem
	Slide 54: 10.4 Stable Marriage Problem
	Slide 55: Instance of the Stable Marriage Problem
	Slide 56: Stable Marriage Algorithm (Gale-Shapley)
	Slide 57: Example
	Slide 58: Example (cont.)
	Slide 59: Example (cont.)
	Slide 60: Analysis of the Gale-Shapley Algorithm

