Chapter 8: Dynamic Programiming '

rVra
Dynamic Programming IS a general algorithmi design technigue

for solving problems defined by Fecurrences With overlapping
subproblems

o [nvented by American mathematician Richarad Bellman in the
1950s to solve optimization problems and later assimilated by CS

o “Programming” here means “planning”

o Main idea:
- Set up a recurrence relating a solution to a larger instance
to solutions ofisome smaller instances
- solve smaller instances once
- record solutions in a table
= - extract solution to the mitial instance from that table
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0.1 Example 02 Fibonaccr nUMIBERS '

VU u
« Recall defimition ofi Fibonaccr numpers:

F(n) = E(n-1) + F(n-2)
= (0))p=H0
F) =1

« Computing the nt Eibonaccl nUMBEF recursively (top-cown):

»)n)\‘

F(n-1) + F=(n-2)

F(n-2) + K(n-3) F(n-3) + K(n-4)
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Example 0 Eibonaccl nUMIRErS (cont.)’”

rFrau

Computing the N Fibonacci number: using bottom-up iteration
and recording results:

=(0)=0
F1) =1
F(2)=1+0=1
i:.&n—Z) =
F(n-1) =

F(n) = F(n-1) + F(n-2)
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Example 1: Coin-row problem
r'rr

rVrau
There Is a row ofi n coins Whose Values are Some PosItive INtegers

C1, C2,...,Cpy, NOL NECESSArily distinct. Tihe goal Is to pick up the
maximum amount of: money subject to the constraint that no two
coins adjacent in the initial row can be picked up.

E.g.: 5, 1, 2, 10, 6, 2. \What 1s the lbest selection?

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4



[DP solution to the coin-row problem '

rVra
[_et K(n) be the maximum amount that can be picked up firom the

row of:n coins. To derive a recurrence for E(n), we partition all
the allowed coin selections 1nto tWwo groups:

those without last coin — the max amount Is ?
those with the last coin -- the max amount IS 2

['hus we have the following recurrence
E(n) = max{c,+ F(n-2), FE(n-1)F forn > 1,

F(0) =0, F(1)=c:
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Pseucdocode

ALGORITHM CoinRow(C|l..n])
[l Applies formula (8.3) bottom up to find the maximum amount of money
//that can be picked up from a coin row without picking two adjacent coins
[fInput: Array C[l..n| of positive integers indicating the coin values
/{Output: The maximum amount of money that can be picked up
F[O] < 0: F[l]<C[1]
fori < 2 tondo

Fli] <= max(C[i|+ F[i = 2], F[i —1])
return Fn|

Print coins of k=n;
optimal solution § while (k>0) {
if (F(k)>F(k-1))

print c[K]
k =Kk-2
else
— k=k-1
=
- T A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson ;
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Example

E(n) = max{c, + E(n-2), E(n-1); forn=> 1,
F(0) =0, F(1)=c:

Talo[2)% 0) il 2 3 4 3]
COINS - 5 il 2 10 6
E()

Max amount:

Coins of optimal solution:

Time efficiency:

Space efficiency:
-

\ Note: All smaller instances were solved.
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Example 2: Change-making proplem et

rVra
(GIVe change for amount n using the minimum nUMIBEK: of:
coins of: denominations d;<d; <. . .<d.., where d; = 1

et F(n) be the minimum nUMBEFE of:coins Whose valties
add up to nand define F(0) = 0.

\\e have the following recurrence for =(n):

F(n)= min {F(n — d;)} + 1 form =0,

Jjin E:d_,-

F(0)=0.

Example: amount n = 6'and coin deneominations 1, 3, and 4.
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Example 2: Psetidocode

ALGORITHM ChangeMaking(D|[1..m|, n)

[ Applies dynamic programming to find the mimimum number of coins
/lof denominations dy < dy < - - - < d,, where dy = | that add up to a
/[given amount n

//Input: Positive integer n and array D[1..m] of increasing positive

I integers indicating the coin denominations where D[1] =1
//Output: The minimum number of coins that add up to n

Fl0] <0

Print coins of k=n;
fori < 1tondo optimal solution ~ While (k>0) {
temp «— o0, j <« | print P[k]
| ’ k = k= P[K]
while j <=m andi = D[j]|do }

temp <—min(F[i — D[j]], remp) if (F(i-D[j]) < temp)

J<Jj+1 temp = F(i-D[j])
Fli] < temp + 1 ~ Plil=D0]
j=i+1
return Fn|
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Example 3: Coin-collecting by robot ’r
Several coins are placed in cells of'an'nxm board. A robot, = = *
located In the upper: left cell of the board; needs to collect as
many. of: the coins as possible and bring them to the bottom Fight
cell. On each step, the robot can moyve either one cell to the right
or: one cell'down firom its current location.

()
o o
O o
(J (J
“ws| C .
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Solution to the coin-collecting problem’"

rVra
[Let K(15)) be the largest number: oficoins the robot can collect and
pring to cell (1;§)1n the ith row and jth coltmn.

['he largest number of coins that can be brought to cell (1;)):

from the left neighbor 7
from the neighbor above?

T'he recurrence:
E(1 J) = max{E(=1, §), E( j=1)F + ¢ for1<i=n,1<j=m
where ¢; = Lt thereis a coin in cell (i;§); and ¢;; = 0'otherwise

FO, p=0for1<j<m and (i, 0)=0for 1 <1=<n.
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SPEeucdocode

ALGORITHM RobotCoinCollection(C[l..n, 1..m|)

/[ Applies dynamic programming to compute the largest number of
//coins a robot can collect on an n x m board by starting at (1, 1)
/fand moving right and down from upper left to down right corner
[/Input: Matrix C[1..n, 1..m] whose elements are equal to 1 and 0
/lfor cells with and without a coin, respectively
//Output: Largest number of coins the robot can bring to cell (n, m)
F[l,1]«<C[1,1]: for j < 2tomdo F[1, j| < F[l, j — 1]+ C[1, j]
fori < 2tondo

Fli,1| < F[i — 1, 1]+ C[i, 1]

for j — 2 tom do

Fli, j] < max(F[i — 1, j], F[i. j — 1]) + C[i, j]

return Fn, m]

Time efficiency: ®(mn). Space efficiency: ®(mn)
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Dynamic programming algorithm: results
I'rs

rFrau

B 1) = max{E(=1, §), E(L -1k +¢; forl< isn, 1<jsm
where ¢; = Lt thereis a coin in cell (i;§), and ¢;; = 0 otherwise
FO, p=0for1<j<m and (1, 0)=0for 1 <1=<n.

| g
‘KL
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Print the Optimal’ Path

PSeudocode that prints the optimal path

I=n; J=n
while ((i>1) || > 1))
if (F[i-1, j] > F[i, j-1]
print ¢T°

1=i-1
else

print ‘<’

J=1-1

Example

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
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Other examples ofi DP algorithms

Computing a binomial coefficient (% 9, EXxercises 6.1)
Some difficult discrete optimization problems:

- knapsack (Sec. 8.2)

- traveling salesman

Constructing an optimal binary searchi tree (Sec. 8.3)

Warshall’s algorithm for transitive closure (Sec. 8.4)

Floyd’s algorithm for all-pairs shortest paths (Sec. 6.4)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
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8.2 Knapsack Problem by DP
r'rr

Given n items' of s
INteger weigntss W, W, ... W,
Values: Vg Vo eee Vo

a knapsack of:integer capacity \W
find most valuable sulbset ofithe items that fit Into the knapsack

Consider instance defined by first i items and capacity. | (J < \W).
et F[iI; ] be optimal valtie of such instance. Then

max {F[i-L, ], Vo + F[i-1 - Wild ifj- W= 0

B[, 5] =
F[i-1, ] ifj-wW; < 0
<=Initial conditions: F[0, j] = 0 and FE[i;, 0] =0
:‘ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
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Knapsack Problem by DP' (Bottom-up) .

Example: Knapsack oficapacity W =5

. - i=n; j=W
item  weight value —— while ((i0) && (j>0)) {
it 2 $12 optimal I(F, 1) > F(-1,J)
: print v;
2 1 $10 solution izj-w,
3 3 20
4 2 $15 Bottom-up
W.=2 V.=12 capacity j
1 3 1 ) 3
w,=1, V,=10
W, =3, Vo=20
W, =2, V=15
. m
- m
: T A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson -

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.



Knapsack Problem by DP (Top-cdown)

I'r

ALGORITHM MFKnapsack(i, j)

/Implements the memory function method for the knapsack problem
/Input: A nonnegative integer i indicating the number of the first
I items being considered and a nonnegative integer j indicating
I the knapsack capacity
//Output: The value of an optimal feasible subset of the first ; items
//Note: Uses as global variables input arrays Weights[1..n|, Values[1..n],
/land table F[0..n, 0..W]whose entries are initialized with —1’s except for
flrow 0 and column 0 initialized with 0’s
if Fli, j]<0
if j < Weights|i]
value «— MFKnapsack(i — 1, j)
else
value < max(MFKnapsack(i — 1, j),
Values|i| + MFKnapsack(i — 1, j — Weights[i]))
Fli, j] < value
return F|[i, j|
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.




Knapsack Problem by DP' (Tiop-down) et

Example: Knapsack oficapacity W =5
item__ weight_ value |

il 2 $12
2 il $10
3 3 40
4 2 $17
_ _ capacity j
w,=1, V,=10 0 0
2 12
W5 =3, V3= 20, ) 27
2 \,=17 2 32
—y VTS V= — 37
' -
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o.o Optimal Binary Search Trees '

rVrau
Problem: Given n keys a; < ...< a. and probabilities p; = ... =,

searching for them, find a BST with a minimum
average nUMIpEr oficomparisons in successtul search.

Since total number oft BSTs with n nodes Is given by,
C(2n,n)/(n+1); which grows exponentially, brute force Is Nopeless.

Example: What 1s an optimal BS'T for keys A, B, C, and Dwith
search probabilities 0.1, 0.2, 0:4; and 0.3, respectively?

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

L §



DP for Optimal BS1F Problem
I

[Cet C[i;j] be minimum average numiuper of:comparisons made in
T[ij]; optimal BSTforkeysa; < ...< a;, where 1 < I'< <.
Consider optimal BST among aII BSTs with some a, (I< k< J)
as therr root; T{1j] 1s the best among them.

(a, Clrjl =

min {p,.. 1+
I<k<j

K-1
. P (leveliagim T{ik=1] +1)+

Optimal S= I

Optimal

BST for BST for

|
Y. s (level ag in T{k+1,1] +1)¢
S =k+1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
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DP for Optimal BSTF Propblem (cont.)

Aftersimplifications, We obtain the recurrence for Gt

J

Clij] = min {Clik-1] + C[k+Ljl} + > p. foris i< j<n}
I<k<] S=i

Cliil=p; forl< i< j<n

omee2012 Pearson
22



Example: key A B C D
propability 0.1 0.2 0.4 0.3

'he tables below are filled diagonal by dlagonal the left one Is fillec
using the recurrence
Clujl'= min {Cluk-1] + C[k+1,j]§ + Z Ps. Clui]=p;;

ISk<] S=]
the right one, for trees’ roots, records k’s values giving the minima
11 0f(1 |2 |3 |4 11011 (23 |4

| |
1 0|1 |4 |11fe7 | |2 1 |2|3 (%
2 0 |2 | 8|14 ] |2 2 | 3

: e(

optimal BS'T

B W W W

D~

(@)

(09)
ol B W




ALGORITHM OpiimalBST(P[1..n])

//T'inds an optimal binary search tree by dynamic programming
/[[Input: An array P|1..n| of search probabilities for a sorted list of n keys ' ' ’
//Output: Average number of comparisons in successful searches in the
/ optimal BST and table R of subtrees’ roots in the optimal BST
fori — 1tondo
Cli,i —1] <0
Cli, 1]« P[i]
R[i,i]<i
Cln+1,n] <0
for d < 1ton — 1 do //diagonal count
fori < 1ton —ddo
j<i+d
minval « 0o
fork < ito jdo
if Cli, k — 1]+ Clk + 1, j| < minval
minval < C[i, k = 1]+ Clk+ 1, j]: kmin <k
Rli. j] < kmin
sum < Pli]; fors < i +1to j do sum < sum + P|s]
Cli, j] < minval + sum
return C [l n], R

UUU U U C LJCTOIU O Ul AIYU U CU. . O YLV
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Analysis DP for Optimal BST Problem’"

rVrau
Time efficiency: ©(n°)
But can be reduced to @(n?) by taking advantage of
monotonicity ofientries in the root table, I'e., entries in the root
table are always nondecreasing along each row and column. Tihis

[Imits valties for R{I,j] 1s always 1in the range between R{i,j-1] ana
R[i+1,j]

Space efficiency: ©(n?)

Method can be expended to include tunsuccesstulsearches

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
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3.4 ' Warshall’s Algorithms: Transitive Closure

- Computes the transitive closure of a relation
o Alternatively: existence of all'nontrivial paths in a digraph

» Example ofi transitive closure:

o P

0010 001
1001 111
0000 000
0100 111

- m

- m
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Warshall’s Algorithm
I'rf

Constructs transitive closure T as the last matrix in the sequiénce™
ofin-by-n matrices RO, ..., R®, ..., RW where

R®[ij] = 1 iff there is nontrivial path from i'to j with only first k

vertices allowed as intermediate

Note that R = A (adjacency matrix), RW="T: (transitive closure)

LR AR
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Warshall’s Algorithm (recurrence)

I'rr

rVra
Oni the K-th iteration, the algorithm determines for every pair: of

vertices I, | If a path exists from 1'and | with just vertices 1.....,K
allowed as intermediate

RSO ] (path using just 1 ,...,k-1)
R[] = o) ¢
R&D[i k] and R&DIK ] (path fromi i to k
___________ 0 and from k o)

using just 1 .....k-1)

~ . :
I B
N
- (j
J =
.y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
s Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28



Warshall’s Algorithm (matrix generation)
I'r

Recurrence relating elements RW to elements of R&Ds:

RO, j] = R&Di. ] or: (R&D[i. k] and R&D[k j])

It implies the following rules for generating R® from RECD:

Rule 1 Ifian element in row irand column jiis 1 in R&D
It remains 1 in R®

Rule 2 [fian element in row irand column jis 0in R,
It has to be changed to 1 in RWifand only if
the element in 1ts row 1and column k and the element
In its columni jjand row k are both 1°s in R
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11l

Warshall’s Algorithm (example)

9

e
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Warshall’s Algorithm (pseudocode and analysis)

Ir

ALGORITHM Warshall(A[l..n, 1..n])

/Mmplements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with » vertices
//Output: The transitive closure of the digraph
RO «— A
fork < 1tondo
fori < 1tondo
for j < 1tondo
RO[i, j1 < R*V[i, jlor (R*V[i k]and R* D[k, j])
return R

Time efficiency: ©(n°)

.Space efficiency: Matrices can be Written OVEr thelr Predecessors

- m
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Floyd’s Algorithm: All pairs shortest paths
rrr

Problem: In aweighted (cr)graph, find shortest paths between
every pair of: VErtiCes

Same idea: construct solution through series of matrices DO, ...,
D (W using increasing subsets ofithe vertices allowed

as intermediate

Example: I
=
Iy -
o m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
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Floyd’s Algorithm (matrix generation)

I'rr

Oni the K-th iteration, the algorithm determines shortest patl'vlsv .
PEtWeEen every pair ol Vertices I j that use only Vertices among
1.....,k as intermediate

D[] = min{DOTif], DEDRK] + DD i1}

DK k]

----------------
-------
.t
.t
.
.

~ DDk ]
B (11 RN

j
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Floyd’s Algorithm (example)
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Floyd’s Algorithm (pseudocode and analysis)
I'r!

ALGORITHM Floyd(W|[l..n, 1..n])
//Implements Floyd’s algorithm for the all-pairs shortest-paths problem
//Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D <« W /fis not necessary if W can be overwritten

fork < 1tondo
fori < 1tondo
for j < 1ton do
D[i, j] < min{D[i, j], D[i, k] + D[k, j]}
return D

Time efficiency: O(n°)
Space efficiency: Matrices can be Written over their predecessors

<:\Iote: Shortest paths themselves can be found, too (Problem 10)

. m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
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