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Chapter 8: Dynamic Programming

Dynamic Programming  is  a general algorithm design technique 
for solving problems defined by recurrences with overlapping
subproblems

• Invented by American mathematician Richard Bellman in the  
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance  

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table 
- extract solution to the initial instance from that table



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

8.1 Example 0: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1)             +             F(n-2)

F(n-2)     +     F(n-3)          F(n-3)     +     F(n-4)

...
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Example 0: Fibonacci numbers  (cont.)

Computing the nth Fibonacci number using bottom-up iteration 

and recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…    

F(n-2) = 

F(n-1) = 

F(n) = F(n-1) + F(n-2) 

     0 

 

    1 

 

 

   1 

 

 .  .  . 

 

 F(n-2) 

 

F(n-1) 

 

 F(n) 
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Example 1:  Coin-row problem

There is a row of n coins whose values are some positive integers 

c₁, c₂,...,cn, not necessarily distinct. The goal is to pick up the 

maximum amount of money subject to the constraint that no two 

coins adjacent in the initial row can be picked up.

E.g.:  5,  1,  2,  10,  6,  2.  What is the best selection?
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DP solution to the coin-row problem

Let F(n) be the maximum amount that can be picked up from the 

row of n coins.  To derive a recurrence for F(n), we partition all 

the allowed coin selections into two groups:

those without last coin  – the max amount is ?

those with the last coin -- the max amount is ?

Thus we have the following recurrence 

F(n)  = max{cn + F(n-2),  F(n-1)}  for n > 1, 

F(0)  = 0,  F(1)=c₁



Pseudocode
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k=n; 

while (k>0) {

if (F(k)>F(k-1))

print c[k]

k = k-2

else

k = k-1

Print coins of 

optimal solution
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Example

index 0 1 2 3 4 5 6

coins -- 5 1 2 10 6 2

F( )

F(n)  = max{cn + F(n-2),  F(n-1)}  for n > 1, 

F(0)  = 0,  F(1)=c₁

Max amount:

Coins of optimal solution: 

Time efficiency:

Space efficiency:

Note: All smaller instances were solved.



Example 2: Change-making problem

Give change for amount n using the minimum number of 

coins of denominations d1<d2 < . . .<dm, where d1 = 1

Let F(n) be the minimum number of coins whose values 

add up to n and define F(0) = 0.

We have the following recurrence for F(n):

Example: amount n = 6 and coin denominations 1, 3, and 4.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Example 2: Pseudocode

if (F(i-D[j]) < temp)

temp = F(i-D[j])

P[i] = D[j]

j = j + 1

Print coins of 

optimal solution

k=n; 

while (k>0) {

print P[k]

k = k – P[k]

}
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Example 3: Coin-collecting by robot

Several coins are placed in cells of an n×m board.  A robot, 

located in the upper left cell of the board, needs to collect as 

many of the coins as possible and bring them to the bottom right 

cell.  On each step, the robot can move either one cell to the right 

or one cell down from its current location. 
1 2 3 4 5 6

1

2

3

4

5
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Solution to the coin-collecting problem

Let F(i,j) be the largest number of coins the robot can collect and 
bring to cell (i,j) in the ith row and jth column.

The largest number of coins that can be brought to cell (i,j):

from the left neighbor ?

from the neighbor above? 

The recurrence: 

F(i, j) = max{F(i-1, j),  F(i, j-1)} + cij for 1 ≤ i ≤ n, 1 ≤ j ≤ m

where cij = 1 if there is a coin in cell (i,j), and cij = 0 otherwise

F(0, j) = 0 for 1 ≤ j ≤ m and F(i, 0) = 0 for 1 ≤ i ≤ n.



Speudocode

Time efficiency: (mn).  Space efficiency: (mn)
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Dynamic programming algorithm results

F(i, j) = max{F(i-1, j),  F(i, j-1)} + cij for 1 ≤ i ≤ n, 1 ≤ j ≤ m

where cij = 1 if there is a coin in cell (i,j), and cij = 0 otherwise

F(0, j) = 0 for 1 ≤ j ≤ m and F(i, 0) = 0 for 1 ≤ i ≤ n.



Pseudocode that prints the optimal path

Example

Print the Optimal Path
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i = n;  j = n

while ((i > 1) || (j > 1))

if (F[i-1, j] > F[i, j-1]

print ‘’

i = i - 1

else

print ‘’

j = j - 1 
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Other examples of DP algorithms

• Computing a binomial coefficient (# 9, Exercises 8.1)

• Some difficult discrete optimization problems:

- knapsack (Sec. 8.2)

- traveling salesman

• Constructing an optimal binary search tree (Sec. 8.3)

• Warshall’s algorithm for transitive closure  (Sec. 8.4)

• Floyd’s algorithm for all-pairs shortest paths (Sec. 8.4)
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8.2 Knapsack Problem by DP

Given n items  of 

integer weights:    w1   w2 …  wn

values:                    v1   v2 …  vn

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j  W).

Let F[i, j] be optimal value of such instance.  Then

max {F[i-1, j], vi + F[i-1, j - wi]}   if j - wi  0
F[i, j] =

F[i-1, j]                                            if j - wi < 0

Initial conditions: F[0, j] = 0  and F[i, 0] = 0


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Knapsack Problem by DP (Bottom-up)

Example:  Knapsack of capacity W = 5

item      weight      value             

1             2             $12

2             1             $10

3             3             $20

4             2             $15

w1 = 2,  v1= 12    

w2 = 1,  v2= 10    

w3 = 3,  v3= 20    

w4  = 2,  v4= 15   

Bottom-up

Print 

optimal 

solution

i=n; j=W 

while ((i>0) && (j>0)) {

if(F(i, j) > F(i-1, j)

print vi

j = j - wi

i = i – 1

}
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Knapsack Problem by DP (Top-down)
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Knapsack Problem by DP (Top-down)

Example:  Knapsack of capacity W = 5

item      weight      value             

1             2             $12

2             1             $10

3             3             $20

4             2             $17

w1 = 2,  v1= 12    

w2 = 1,  v2= 10    

w3 = 3,  v3= 20    

w4  = 2,  v4= 17   

Top-down
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8.3 Optimal Binary Search Trees

Problem: Given n keys a1 < …< an and probabilities p1 ≤ … ≤ pn

searching for them, find a BST with a minimum

average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by 

C(2n,n)/(n+1), which grows exponentially, brute force is hopeless. 

Example: What is an optimal BST for keys A, B, C, and D with

search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?
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DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in 

T[i,j], optimal BST for keys ai < …< aj , where 1 ≤  i ≤  j ≤ n. 

Consider optimal BST among all BSTs with some ak  (i ≤  k ≤ j ) 

as their root; T[i,j] is the best among them. 

a

Optimal

BST for

a   , ...,  a

Optimal

BST for

a      , ...,  ai

k

k-1 k+1 j

C[i,j] =

min  {pk · 1 +

∑ ps (level as in T[i,k-1] +1) +

∑ ps (level as in T[k+1,j] +1)}

i ≤ k ≤ j

s = i

k-1

s =k+1

j
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goal0

0

C[i,j]

0

1

n+1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for C[i,j]:

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps for 1 ≤  i ≤  j ≤ n }

C[i,i] = pi    for 1 ≤  i ≤  j ≤ n
s = i

j

i ≤ k ≤ j



Example:   key                  A     B     C     D

probability   0.1   0.2   0.4  0.3

The tables below are filled diagonal by diagonal: the left one is filled 

using the recurrence 

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps ,    C[i,i] = pi ;

the right one, for trees’ roots, records k’s values giving the minima

0 1 2 3 4

1 0 .1 .4 1.1 1.7

2 0 .2 .8 1.4

3 0 .4 1.0

4 0 .3

5 0

0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

i ≤ k ≤ j s = i

j

optimal BST

B

A

C

D

i 
j

i 
j
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Optimal Binary Search Trees
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Analysis DP for Optimal BST Problem

Time efficiency:  Θ(n3) 

But can be reduced to Θ(n2) by taking  advantage of 

monotonicity of entries in the root table, i.e., entries in the root 

table are always nondecreasing along each row and column. This 

limits values for R[i,j] is always in the range between R[i,j-1] and 

R[i+1,j]

Space efficiency: Θ(n2)

Method can be expended to include unsuccessful searches
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8.4 Warshall’s Algorithm: Transitive Closure

• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:

3

4
2

1

0  0  1  0

1  0  0  1

0  0  0  0

0  1  0  0

0  0  1  0

1  1  1 1

0  0  0  0

1 1  1  1

3

4
2

1
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Warshall’s  Algorithm

Constructs transitive closure T as the last matrix in the sequence 

of n-by-n matrices  R(0), … , R(k), … , R(n) where

R(k)[i,j] = 1 iff there is nontrivial path from i to j with only first k 

vertices allowed as intermediate 

Note that R(0) = A (adjacency matrix), R(n) = T  (transitive closure)

3

42

1
3

42

1
3

42

1

3

42

1

R(0)

0  0  1  0

1  0  0  1

0  0  0  0

0  1  0  0

R(1)

0  0  1  0

1  0 1 1

0  0  0  0

0  1  0  0

R(2)

0  0  1  0

1  0  1  1

0  0  0  0

1 1  1  1

R(3)

0  0  1  0

1  0  1  1

0  0  0  0

1  1  1  1

R(4)

0  0  1  0

1  1 1  1

0  0  0  0

1  1  1  1

3

42

1
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Warshall’s  Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of 

vertices i, j if a path exists from i and j with just vertices 1,…,k 

allowed as intermediate

R(k-1)[i,j]                            (path using just 1 ,…,k-1)

R(k)[i,j] =            or 

R(k-1)[i,k]  and R(k-1)[k,j]    (path from i to k

and from k to j

using just 1 ,…,k-1)
i

j

k

{
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Warshall’s  Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is: 

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1), 

it remains 1 in R(k)

Rule 2  If an element in row i and column j is 0 in R(k-1),

it has to be changed to 1 in R(k) if and only if 

the element in its row i and column k and the element

in its column j and row k are both 1’s in R(k-1)
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Warshall’s Algorithm (example)

3

42

1 0  0  1  0

1  0  0  1

0  0  0  0

0  1  0  0

R(0)  =

0  0  1  0

1  0  1 1

0  0  0  0

0  1  0  0

R(1)  =

0  0  1  0

1  0  1  1

0  0  0  0

1 1  1 1

R(2)  =

0  0  1  0

1  0  1  1

0  0  0  0

1  1  1  1

R(3)  =

0  0  1  0

1  1 1  1

0  0  0  0

1  1  1  1

R(4)  =
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Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors
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Floyd’s Algorithm: All pairs shortest paths

Problem:    In a weighted (di)graph, find shortest paths between

every pair of vertices

Same idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3
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Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths 

between every pair of vertices i, j that use only vertices among 

1,…,k as intermediate

D(k)[i,j] =  min {D(k-1)[i,j],  D(k-1)[i,k]  + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]
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Floyd’s Algorithm (example)

0   ∞ 3   ∞

2   0  ∞  ∞

∞  7   0   1

6   ∞ ∞  0

D(0)  = 

0   ∞  3   ∞

2   0   5 ∞

∞  7   0   1

6   ∞  9 0

D(1)  =

0   ∞  3   ∞

2   0   5   ∞

9 7   0   1

6   ∞  9   0

D(2)  =

0  10 3  4

2   0   5  6

9   7   0  1

6  16 9  0

D(3)  =

0  10  3  4

2   0   5  6

7 7   0  1

6  16  9  0

D(4)  =

3
1

3

2

6 7

4

1 2
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Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too (Problem 10)
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