Chapter 7: Space-for-time tradeoffs '

rVra
T\Wo varieties of:space-for-time algorithms:

Input ennancement. — Preprocess the put (or Its part) to
store some Info to be used later insolving the problem

counting methods for sorting
string searching algorithms

prestructuring — preprocess the mput to make accessing Its
elements easier:

nashing
Indexing schemes (e.g., B-trees)

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

7.1 Sorting by Counting

Comparison-counting Sort
for- each element of a list to be sorted, count the total numier: of
elements smaller: than this element and record the results in a table

Example ofisorting by comparison counting
Array A[0..5]

Initially

After passi =0
After pass i =
After pass |

After pass |
After pass |
Final state

Array 5[0..5]

A

i1id

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

Seucdocode off Comparison-counting Sort

return S

ALGORITHM ComparisonCountingSort(A[0..n — 1])

//Sorts an array by comparison counting
[Mnput: An array A[0..n — 1] of orderable elements
//Output: Array S[0..n — 1] of A’s elements sorted in nondecreasing order
fori < Oton — 1do Count[i] <0
fori < 0Oton —2do
for j «—1+1ton —1do
if A[i] < A[J]
Count|j]
else Count|i|
fori <~ 0ton —1do S[Counti]] < Ali]

«— Count
«— Count

I'r!

J]1+1
i+ 1

time efficiency ©(n?): is the same as the selection sort

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

SOKtiNg by distribution counting

EXAMPLE:
Consider: sorting the array: 13, 11, 12, 13, 12, 12
Compute frequencies and distribution:

Distribution value indicates

position ofilast occurrence of:

the array value in the sorted Frequencies
array. Distribution values

Array values

Process the array from right to left
put each array value in
e A5l =12
the position indicated by 4] = 12
distribution value and FAEIERE!

reduce the distribution j ﬁ} - ﬁ
valtie by 1 AL0] - 13
.
| -
- o A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson .

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

PSeucocode oft distribution counting

Hr

ALGORITHM DistributionCountingSort(A[0..n — 1], [, u)

//Sorts an array of integers from a limited range by distribution counting
/Mnput: An array A|0..n — 1] of integers between [and u (I < u)
/IOutput: Array S[0..n — 1] of A’s elements sorted in nondecreasing order
for j < Otou —[do D[j] <0 /Nnitialize frequencies
fori < Oton — 1do D[A[i]—[] < D[A[i] —]+ 1 //compute frequencies
for j «—1tou —[do D[j]| <« D[j — 1]+ D[] /Ireuse for distribution
fori < n — 1 downto O do

Jj < Ali] -1

SID[j]—1] < Al{]

Dlj] < Dlj]-1
return §

Tiime efficiency: ©(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

144

7.2 Review: String searching by, brute force

I'rr

rVrau
pattern: a string of:m characters to search for

text: a (long) string ofin characters to search in

Brute force algorithm
Step 1 Align pattern at beginning of: text

Step 2 Moving from left to Fight, compare each character of:
pattern to the corresponding character in text until
either all'characters are found to match (successtul
search) or a mismatch i1s detected

Step s While a mismatch is detected and the text 1s not yet
exhausted; realign pattern one position to the right ana
repeat Step 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

STEING searching by pPreprocessing '

rVrau
Several string searching algorithms are based on the input

enhancement 1dea of: preprocessing the pattern

Knuth-Morris-Pratt (KMP) algorithm preprocesses
pattern left to right to get usefuliinformation for later

searching

Boyer: -\Moore algorithm: preprocesses pattern right to left
and: store imformation into two tables

Horspool’s algorithm simplifies the Boyer-Moore algorithm
Py USINg just one table

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

| g

Horspool’s Algorithm

r'rr

A simplified version ofi Boyer-Moore algorithm:

144

PrEPrOCEeSSeS pattern to generate a shift table that
determines how much: to shift the patternwhen a
mismatch OCCUrs

always makes a shift based on the text’s character C
aligned with the last character: in the pattern accorading
to the shift table’s entry for C

C

EARBER

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

How far: to shifit?
'rr

rVra
[_ook at first (rightmost) character in text that Was compared:

[ihe character Is not In the pattern
..... C.eeeeeeeeennee.. (enotinpattern)

['he character Is'in the pattern (but not the rightmost)

..... O.....0000000022....... (O0ccursonce in pattern)
BAOBAB
..... A..........0000eu...... (Aoccurstwice in pattern)
BAOBAB

- m
—y BAOBAB
- m

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Shift table
{11,
Shift Sizes can be precomputed by the formula

distance frromi ¢’s Fightmost oCCUrrence In pattern
t(c) = among Its first m-1 characters to Its right end

pattern’s length m, otherwise

Py scanning pattern before search Pegins and stored In a
table called shift table

Shift table Is indexed by text and pattern alphabet
Eg, for BAOBAB:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example of Horspool’s alg. application

I
Vru
22 c|o|=|z|ox|x]s]x|s mmloeoln|s|=|o]v|nix|x|z |

11216/6/6/616]6/6]66]6/6]613]6 /6 6 s 6|6 6 s /6 s

BARD LOVED BANANAS
BAOBAB
BAOBZB
BAOBAB
BAOBARB (unsuccessful search)

11

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
8 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Boyer-NMoore algorithm
rrr

Yy v u
Based on same two ideas:

comparing pattern characters to text firom right to left

precomputing shift sizes in two tables

bad-symbol table indicates how much to shift based on
text’s character causing a mismatch

good-suffix table indicates now much to st based on
matched part (suffix) of the pattern

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Bad-symbol shifit in' Boyer-\Moore algorithm
L.
It the rightmost character of the pattern doesn’t match, BM
algorithm acts as Horspool’s
Ifithe rightmost character ofithe pattern does match, BV
compares preceding characters right to left until either all

pattern’s characters match or a mismatch on text’s
character: ¢ IS encountered after k> 0 matches

= I T
pattern IR

pad-symbolishift d; = max{t,(c) - k; 1}, Where t,(C) IS pre-
=w computed by Horspool’s algorithm

|

'

4 A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
8 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

| g

144

Good-suffix shift in Boyer-Moore algorithm

I'rr

Good-suffix shift ds is applied after 0 < k < m last characters
WEre matched

d5(k) = the distance between matched suffix ofisize k andiits
FIghtmost occurrence In the pattern that 1s not preceded by
the same character as the suffix

Example: CABABA d,(1) = 2

Ifithere IS no such occurrence, match the longest part of the
K-character: suffix with:corresponding prefix;
Ifithere are no such suffix-prefix matches, d; (k)= m

Example: WOWHOW. d,(2) =3, dy(3) =3, dy(4) =5, d,(5) =5

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Good-suffix shift in the Boyer-Moore alg. (cont.)
I'rf

rVrau
After matching successtully 0'< k < m characters, the algorithm
shifts the pattern right by

d' = max {d, d;}
where d; = max{t;(c) - k; 1} 1s bad-symbol shift
d5(K) 1S good-suffix shift

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

| g

144

Boyer-Moore Algorithm (cont.)

Step 1
Step 2
Step s
Step 4

r'rr

rFrau

Filltin the bad-symibol shift table

Fillfin the good-suffix shift table

Align the pattern against the beginning of: the text
Repeat until'a matching substring Is found or text ends:
Compare the corresponding characters right to left.

I no characters match, retrieve entry t;(c) from the
bad-symbol table for the text’s character ¢ causing the
mismatch and shift the pattern to the right by t;(C).
I 0'< k < m characters are matched, retrieve entry t;(c)
from the bad-symbol table for the text’s character
causing the mismatch and entry d;(k) from the good-
sutfix table and shift the pattern to the right by,

d' = max {d, d,}
Where d; = max{t,(c) -k 1}.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

Example of: Boyer-Moore alg. application

11
2151610 3]]6 811 5 < w0 la x s x o wx/x s

11216/6/6/616]6/6]66]6/6]613]6 /6 6 s 6|6 6 s /6 s

S KNEW ABOUT BAOBAGBS
B AB
6

S W W
I |

S
0)
= 4(R) = BAOBARB

(25

Aot)it

Olram

B A OB A B (success)
SHEEIN

N A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
8 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

| g

Boyer-NMoore example from their paper’"

rVra
Find pattern AT THAT 1N

WHICH FINALLY HALTS. AT THAT

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

111

7.5 Hashing '

rFrau

A very efficient method for implementing a
dictionary, I.e., a set with the operations:
find
INSEert
delete

Based on representation-change and space-for-time
tradeoff ideas

Important applications:
symbol tables
databases (extendible hashing)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Hash tables and hash functions
'rr

rVrau
T'he 1dea oft hashing i1s to map keys of a given file ofisize n into

a table of:size m, called the hash table, by using a predefined
function, called the hash functon,
n: K= location (cell)in the hash table

Example: student records, key = SSN. Hash function:
N(K) = K mod m where m i1s some integer (typically, prime)
Ifim = 1000, where Is record with SSN= 314159265 stored?

Generally, a hash function should:
De easy to compute
distribute keys about evenly throughout the hash table

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Collisions
'r

1T (K = N(KS); there is a callision

Good hash functions result in fewer: collisions but some
collisions should e expected (birthday: paradox)

T'wo principal hashing schemes handle collisions differently:

Open hashing
— each cell'is a header: ofilinked list ofrall keys hashed to/it

Closed hashing
one key per: cell
In case of: collision, finds another: cell by
linear probing: use next free bucket
double hashing: use second hash function to compute Increment

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Open hashing (Separate chaining) APE

rVra
Keys are stored in linked lists outside a hash table whose
elements serve as the lists” headers.
Examples A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED
N(K) = sum ofi K s letters’ positions in the alphabet MOD 13

Key | A | EOOL | AND HIS | MONEY | ARE [SOON | PARTED

Nk | 1 9 6 10 7/ 11 11 12
0] 1 2 3 4 5 6 { 3 9 10 11 12
A AND MONEY FOOL HIS ARE PARTED
= SOON
~ -
o= Searah f@Fidd Rion to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson ”

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Open hashing (cont.) '

rVrau
If:hash function distributes keys unmiformiy, average length of
linked list will'be o = n/m. This ratio Is called load factor.

AVerage number ofi probes in successtul; S; and unstccesstul
searches, U:

S~ 1+a/2, U=a
lLoad o is typically kept small (ideally, about 1)

Open hashing still works ifs n'=>m

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

| g

Closed hashing (Open addressing) ’PP

rVrau
Keys are stored inside a hash table.

Key A [EOOL [AND | HIS | MONEY | ARE | SOON | PARTED

h(K) il 9 6 10 7 11 11 12
0 1 234 5 6 7 8 9 10 11 12
A
A FOOL
A AND FOOL
A AND FOOL |HIS
A AND | MONEY. FOOL |HIS
A AND | MONEY. FOOL |HIS | ARE
A AND | MONEY. FOOL |HIS | ARE [SOON
;:DARTED A AND | MONEY. FOOL |HIS | ARE [SOON
_h

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

| g

144

Closed hashing (cont.) et

[Does not work ifin > m
AVO0ICS POINTEFS
Deletions are not straightforwarad

NUumber: ofi probes to find/insert/delete a key depends on
load factor o= n/m (hashi table density) and collision
resolution strategy. FOr linear probing:

S= (%) (1+ 1/(1- o) and U= (Y2) (1+ L/(1- a)?)
As the table gets filled (o approaches 1), numBber: ofi probes
In linear probing increases dramatically:

50%

75% 2.5
90% 5.9

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

| g

144

7.4 B-Trees

I

All data records (or record keys) are stored at the leaves, In
INncreasing order of the keys

T'he parental nodes are used for indexing
Keys are interposed with pointers tor children.
Key left to a pointer < all'keys in child pointed by the pointer
< Kkey right to the pointer

In addition, a B-tree of order m = 2 must satisfy the
following structural properties:
T'he root Is either: a leafi or has between 2 and m children.

Each node, except for the root and the leaves, has between m/2 and
m children

The tree Is balanced, 1.e., all' its leaves are at the same level.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

26

B-1Tirees (Cont.) et

Example ofia B-tree ofiorder 4

|20] [51]] ||
IEDNEC I |25 [34] |40] | Jsof |] [

Search operation in B-tree

B-tree often used for indexing large data file
Nodes represent disk pages

Minimizing the node accesses (minimizing the height) will: mimimizes
disk accesses.

A

i1id

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

| g

B-1Tirees (Cont.) et

oK any B-tree ofi order m with n nodes and height =0, We
nave the following ineguality

h—1

n>1+ Z 2(m /21 Y m/21 = 1) + 2[m /21" 1.

=1

1hiS gives an upper: bound ofin

Example: for a file of 100 million records, we have

order m 50 100 250

h’s upper bound 6 5 4
B
™=
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 7 ©2012 Pearson
8 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

	Slide 1: Chapter 7: Space-for-time tradeoffs
	Slide 2: 7.1 Sorting by Counting
	Slide 3: Seudocode of Comparison-counting Sort
	Slide 4: Sorting by distribution counting
	Slide 5: Pseudocode of distribution counting
	Slide 6: 7.2 Review: String searching by brute force
	Slide 7: String searching by preprocessing
	Slide 8: Horspool’s Algorithm
	Slide 9: How far to shift?
	Slide 10: Shift table
	Slide 11: Example of Horspool’s alg. application
	Slide 12: Boyer-Moore algorithm
	Slide 13: Bad-symbol shift in Boyer-Moore algorithm
	Slide 14: Good-suffix shift in Boyer-Moore algorithm
	Slide 15: Good-suffix shift in the Boyer-Moore alg. (cont.)
	Slide 16: Boyer-Moore Algorithm (cont.)
	Slide 17: Example of Boyer-Moore alg. application
	Slide 18: Boyer-Moore example from their paper
	Slide 19: 7.3 Hashing
	Slide 20: Hash tables and hash functions
	Slide 21: Collisions
	Slide 22: Open hashing (Separate chaining)
	Slide 23: Open hashing (cont.)
	Slide 24: Closed hashing (Open addressing)
	Slide 25: Closed hashing (cont.)
	Slide 26: 7.4 B-Trees
	Slide 27: B-Trees (Cont.)
	Slide 28: B-Trees (Cont.)

