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Chapter 6: Transform and Conquer

This group of techniques solves a problem by a 

transformation to

a simpler/more convenient instance of the same  

problem (instance simplification) 

a different representation of the same instance 

(representation change)

a different problem for which an algorithm is 

already available (problem reduction) 
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6.1 Instance simplification - Presorting

Solve a problem’s instance  by transforming it into

another simpler/easier instance of the same problem

Presorting

Many problems involving lists are easier when list is sorted, e.g.

searching 

computing the median (selection problem)

checking if all elements  are distinct (element uniqueness)

Also: 

Topological sorting helps solving some problems for dags.

Presorting is used in many geometric algorithms.
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How fast can we sort ?

Efficiency of algorithms involving sorting depends on

efficiency of sorting.

Theorem (see Sec. 11.2):  log2 n!  n log2 n  comparisons are 

necessary in the worst case to sort a list of size n by any

comparison-based algorithm.

Note: About nlog2 n comparisons are also sufficient to sort 
array of size n (by mergesort).



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Searching with presorting

Problem: Search for a given K in A[0..n-1]

Presorting-based algorithm:

Stage 1  Sort the array by an efficient sorting algorithm

Stage 2  Apply binary search 

Efficiency: Θ(nlog n) + O(log n) = Θ(nlog n) 

Good or bad?

Why do we have our dictionaries, telephone directories, etc. 

sorted?
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Element Uniqueness with presorting

Presorting-based algorithm

Stage 1: sort by efficient sorting algorithm (e.g. mergesort)

Stage 2: scan array to check pairs of adjacent elements

Efficiency: Θ(nlog n) + O(n) = Θ(nlog n)

Brute force algorithm 

Compare all pairs of elements

Efficiency: O(n2)

Another algorithm?  Hashing
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6.2 Instance simplification – Gaussian Elimination

Given: A system of n linear equations in n unknowns with an 

arbitrary coefficient matrix.

Transform to: An equivalent system of n linear equations in n 

unknowns with an upper triangular coefficient matrix.

Solve the latter by substitutions starting with the last equation  

and moving up to the first one.

a11x1 + a12x2 + …  + a1nxn = b1              a11x1+ a12x2 + …  + a1nxn = b1

a21x1 + a22x2 + …  + a2nxn = b2                 a22x2 + …  + a2nxn = b2

an1x1 + an2x2  + …   + annxn = bn annxn = bn
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Gaussian Elimination (cont.)

The transformation is accomplished by a sequence of elementary 

operations on the system’s coefficient matrix  (which don’t 

change the system’s solution):

for i ←1 to n-1 do

replace each of the subsequent rows (i.e., rows i+1, …, n) 

by a difference between that row and an appropriate 

multiple of the i-th row to make the new coefficient in 

the i-th column of that row 0
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Example of Gaussian Elimination

Solve        2x1 - 4x2 +  x3 =   6  
3x1 - x2    + x3 = 11
x1 +  x2    - x3 = -3

Forward elimination

2 -4 1   6                                       2 -4 1 6 

3  -1   1  11  row2 – (3/2)*row1    0   5  -1/2    2 

1   1  -1 -3  row3 – (1/2)*row1     0   3  -3/2  -6  row3–(3/5)*row2

2 -4 1 6

0   5  -1/2      2

0   0  -6/5  -36/5

Backward substitution

x3 = (-36/5) / (-6/5) = 6

x2 = (2+(1/2)*6) / 5 = 1

x1 = (6 – 6 + 4*1)/2 = 2
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Pseudocode and Efficiency of Gaussian Elimination

Stage 1: Reduction to an upper-triangular matrix

for i ← 1 to n-1 do

for j ← i+1 to n do
for k ← i to n+1 do

A[j, k] ← A[j, k] - A[i, k] * A[j, i] / A[i, i]  //improve!

Stage 2: Back substitutions
for j ← n downto 1 do

t ← 0

for k ← j +1 to n do

t ← t + A[j, k] * x[k] 
x[j] ← (A[j, n+1] - t) / A[j, j] 

Efficiency: Θ(n3) + Θ(n2) = Θ(n3)
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6.3 Searching Problem

Problem: Given a (multi)set S of keys  and a search  

key K, find an occurrence of K in S, if any

Searching must be considered in the context of:

• file size (internal vs. external)

• dynamics of data (static vs. dynamic)

Dictionary operations (dynamic data):

• find (search)

• insert

• delete
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Taxonomy of Searching Algorithms

List searching

• sequential search

• binary search

• interpolation search

Tree searching 

• binary search tree

• binary balanced trees: AVL trees, red-black trees

• multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees

Hashing

• open hashing (separate chaining)

• closed hashing (open addressing)
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Binary Search Tree

Arrange keys in a binary tree with the binary search 

tree  property:

K

<K >K

Example: 5, 3, 1, 10, 12, 7, 9
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Dictionary Operations on Binary Search Trees

Searching – straightforward

Insertion – search for key, insert at leaf where search terminated

Deletion – 3 cases:

deleting key at a leaf

deleting key at node with single child

deleting key at node with two children

Efficiency depends of the tree’s height: log2 n  h  n-1,
with height  average (random files) be about 3log2 n

Thus all three operations have

• worst case efficiency: (n) 

• average case efficiency: (log n)

Bonus: inorder traversal produces sorted list
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6.3 Balanced Search Trees 

Attractiveness of binary search tree is marred by the bad (linear) 

worst-case efficiency.  Two ideas to overcome it are:

to rebalance binary search tree when a new insertion

makes the tree “too unbalanced”

• AVL trees

• red-black trees

to allow more than one key per node of a search tree

• 2-3 trees

• 2-3-4 trees

• B-trees
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Balanced trees:  AVL trees

Definition An AVL tree is a binary search tree in which, for 
every node, the difference between the heights of its left and 
right subtrees, called the balance factor, is at most 1 (with 
the height of an empty tree defined as -1)
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Rotations

If a key insertion violates the balance requirement at some 
node, the subtree rooted at that node is transformed via one of 
the four rotations.  (The rotation is always performed for a 
subtree rooted at an “unbalanced” node closest to the new leaf.)
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General case: Single R-rotation
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General case: Double LR-rotation
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AVL tree construction - an example

Construct an AVL tree for the list  5, 6, 8, 3, 2, 4, 7 
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AVL tree construction - an example (cont.)
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Analysis of AVL trees

h   1.4404 log2 (n + 2)  - 1.3277                                

average height: 1.01 log2n +  0.1 for large n (found empirically)

Search and insertion are O(log n) 

Deletion is more complicated but is also O(log n)

Disadvantages: 

• frequent rotations

• complexity

A similar idea: red-black trees (height of subtrees is allowed to 

differ by up to a factor of 2) 
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Multiway Search Trees

Definition A multiway search tree is a search tree that allows
more than one key in the same node of the tree.

Definition A node of a search tree is called an n-node if it 
contains n-1 ordered keys (which divide the entire key range 
into n intervals pointed to by the node’s n links to its children):

Note: Every node in a classical binary search tree is a 2-node

k1 <  k2 < … <  kn-1

< k1 [k1, k2 )  kn-1



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

2-3 Tree 

Definition A 2-3 tree is a search tree that

may have 2-nodes and 3-nodes

height-balanced (all leaves are on the same level)

A 2-3 tree is constructed by successive insertions of keys given, 
with a new key always inserted into a leaf of the tree.  If the leaf 
is a 3-node, it’s split into two with the middle key promoted to 
the parent. 

K K  ,  K1 2

(K  , K  )
1 2

2-node 3-node

<  K >  K< K > K
1 2
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2-3 tree construction – an example

Construct a 2-3 tree the list  9, 5, 8, 3, 2, 4, 7

9
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Analysis of 2-3 trees

log3 (n + 1) - 1  h   log2 (n + 1)  - 1

Search, insertion, and deletion are in (log n) 

The idea of 2-3 tree can be generalized by allowing more 

keys per node 

• 2-3-4 trees 

• B-trees
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6.4 Heaps and Heapsort

Definition A heap is a binary tree with keys at its nodes (one 

key per node) such that:

It is essentially complete, i.e., all its levels are full except 

possibly the last level, where only some rightmost keys may 

be missing

The key at each node is ≥ keys at its children
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Illustration of the heap’s definition

10

5

4 2

7

1

10

5

2

7

1

10

5

6 2

7

1

a heap not a heap not a heap

Note: Heap’s elements are ordered top down (along any path  

down from its root), but they are not ordered left to right
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Some Important Properties of a Heap

There exists exactly one essentially complete binary tree 

with n nodes. Its height is equal to log2 n.

The root contains the largest key

The subtree rooted at any node of a heap is also a heap

A heap can be represented as an array
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Heap’s Array Representation

Store heap’s elements in an array (whose elements indexed, 
for convenience, 1 to n) in top-down left-to-right order

Example:

Left child of node j is at 2j

Right child of node j is at 2j+1

Parent of node j is at j/2

Parental nodes are represented in the first n/2 locations

9

1

5 3

4 2

1   2   3   4   5   6

9   5   3   1   4   2
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Step 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the 

heap rooted at it, if it doesn’t satisfy the heap 

condition: keep exchanging  it with its largest child 

until the heap condition holds

Step 2: Repeat Step 1 for the preceding parental node

Heap Construction (bottom-up)
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Example of Heap Construction
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Construct a heap for the list 2, 9, 7, 6, 5, 8
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Pseudopodia of bottom-up heap construction
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Stage 1: Construct a heap for a given list of n keys

Stage 2: Repeat operation of root removal n-1 times:

– Exchange keys in the root and in the last 

(rightmost) leaf

– Decrease heap size by 1

– If necessary,  swap new root with larger child until 

the heap condition holds

Heapsort
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Sort the list  2,  9,  7,  6,  5,  8  by heapsort

Stage 1 (heap construction) Stage 2 (root/max removal)

2   9   7 6   5   8 9 6   8   2   5   7

2   9 8   6   5   7 7   6   8   2   5 | 9

2 9   8   6   5   7 8 6   7   2   5 | 9

9   2 8   6   5   7 5   6   7   2 | 8   9

9   6   8   2   5   7 7 6   5   2 | 8   9

2   6   5 | 7   8   9

6 2   5 | 7   8   9

5 2 | 6   7   8   9

5 2 | 6   7   8   9

2 | 5   6   7   8   9

Example of Sorting by Heapsort
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Stage 1: Build heap for a given list of n keys

worst-case

C(n) =  

Stage 2: Repeat operation of root removal n-1 times (fix heap)

worst-case

C(n) =  

Both worst-case and average-case efficiency: (nlogn) 

In-place: yes

Stability: no (e.g., 1  1)

 2(h-i) 2i       =   2 ( n – log2(n + 1))   (n)
i=0

h-1

# nodes at 

level i


i=1

n-1

2log2 i  (nlogn)

Analysis of Heapsort
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A priority queue is the ADT of a set of elements with 

numerical priorities with the following operations:

• find element with highest priority

• delete element with highest priority

• insert element with assigned priority (see below)

Heap is a very efficient way for implementing priority queues

Two ways to handle priority queue in which

highest priority = smallest number

Priority Queue
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Insertion of a New Element into a Heap

Insert the new element at last position in heap. 

Compare it with its parent and, if it violates heap condition,

exchange them

Continue comparing the new element with nodes up the tree 

until the heap condition is satisfied

Example: Insert key 10

Efficiency: O(log n)
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6.5 Horner’s Rule For Polynomial Evaluation

Given a polynomial of degree n

p(x) = anxn + an-1x
n-1 + … + a1x + a0

and a specific value of x, find the value of p at that point.

Two brute-force algorithms:

p  0 p  a0;   power  1

f or i  n downto 0 do for i  1 to n do

power  1 power  power * x

for j  1 to i do p  p + ai * power

power  power * x      return p

p  p + ai * power

return p
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Horner’s Rule

Example: p(x) = 2x4 - x3 + 3x2 + x - 5 =

= x(2x3 - x2 + 3x + 1) - 5 = 

= x(x(2x2 - x + 3) + 1) - 5 =

= x(x(x(2x - 1) + 3) + 1) - 5

Substitution into the last formula leads to a faster algorithm 

Same sequence of computations are obtained by simply 

arranging the coefficient in a table and proceeding as follows:

coefficients 2 -1 3 1 -5

x=3
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Horner’s Rule pseudocode

Efficiency of Horner’s Rule: # multiplications = # additions = n

Synthetic division of p(x) by (x-x0)
Example: Let p(x) = 2x4 - x3 + 3x2 + x - 5.  Find p(x)/(x-3)
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Computing  an (revisited)

Left-to-right binary exponentiation
Initialize product accumulator by 1.

Scan n’s binary expansion from left to right and do the 

following: 

If the current binary digit is 0, square the accumulator (S);

if the binary digit is 1, square the accumulator and multiply it 

by a (SM).

Example:   Compute a13.  Here, n = 13 = 11012

binary rep. of 13:              1             1 0                1

SM         SM S SM 

accumulator:   1           12*a=a a2*a = a3 (a3)2 = a6 (a6)2*a= a13 

(computed left-to-right)
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Left-to-right binary exponentiation

Efficiency:  b ≤  M(n) ≤ 2b where b = log2 n + 1
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Computing  an (cont.)

Scan n’s binary expansion from right to left and compute an as 

the product of terms a2 i corresponding to 1’s in this expansion. 

Example Compute a13 by the right-to-left binary exponentiation.  

Here, n = 13 = 11012.  

1 1 0                1

a8 a4 a2 a        :     a2 i terms 

a8 *        a4 *                         a :     product 

(computed right-to-left)

Efficiency: same as that of left-to-right binary exponentiation
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Right-to-left binary exponentiation
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6.6 Problem Reduction

This variation of transform-and-conquer solves a problem by 

a transforming it into different problem for which an 

algorithm is already available.

To be of practical value, the combined time of the 

transformation and solving the other problem should be 

smaller than solving the problem as given by another 

method. 
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Examples of Solving Problems by Reduction

computing lcm(m, n) via computing gcd(m, n)

counting number of paths of length n in a graph by raising 

the graph’s adjacency matrix to the n-th power

transforming a maximization problem to a minimization 

problem and vice versa (also, min-heap construction)

linear programming (Knapsack problem can be formulated 

as linear programming problem) 

reduction to graph problems (e.g., solving puzzles via state-

space graphs) 


	Slide 1: Chapter 6: Transform and Conquer
	Slide 2: 6.1 Instance simplification - Presorting
	Slide 3: How fast can we sort ?
	Slide 4: Searching with presorting
	Slide 5: Element Uniqueness with presorting
	Slide 6: 6.2 Instance simplification – Gaussian Elimination
	Slide 7: Gaussian Elimination (cont.)
	Slide 8: Example of Gaussian Elimination
	Slide 9: Pseudocode and Efficiency of Gaussian Elimination
	Slide 10: 6.3 Searching Problem
	Slide 11: Taxonomy of Searching Algorithms
	Slide 12: Binary Search Tree
	Slide 13: Dictionary Operations on Binary Search Trees
	Slide 14: 6.3 Balanced Search Trees 
	Slide 15: Balanced trees:  AVL trees
	Slide 16: Rotations
	Slide 17: General case: Single R-rotation
	Slide 18: General case: Double LR-rotation
	Slide 19: AVL tree construction - an example
	Slide 20: AVL tree construction - an example (cont.)
	Slide 21: Analysis of AVL trees
	Slide 22: Multiway Search Trees
	Slide 23: 2-3 Tree 
	Slide 24: 2-3 tree construction – an example
	Slide 25: Analysis of 2-3 trees
	Slide 26: 6.4 Heaps and Heapsort
	Slide 27: Illustration of the heap’s definition
	Slide 28: Some Important Properties of a Heap
	Slide 29: Heap’s Array Representation
	Slide 30: Heap Construction (bottom-up)
	Slide 31: Example of Heap Construction
	Slide 32: Pseudopodia of bottom-up heap construction
	Slide 33: Heapsort
	Slide 34: Example of Sorting by Heapsort
	Slide 35: Analysis of Heapsort
	Slide 36: Priority Queue
	Slide 37: Insertion of a New Element into a Heap
	Slide 38: 6.5 Horner’s Rule For Polynomial Evaluation
	Slide 39: Horner’s Rule
	Slide 40: Horner’s Rule pseudocode
	Slide 41: Computing  an  (revisited)
	Slide 42: Left-to-right binary exponentiation
	Slide 43: Computing  an  (cont.)
	Slide 44: Right-to-left binary exponentiation 
	Slide 45: 6.6 Problem Reduction
	Slide 46: Examples of Solving Problems by Reduction

