Chapter 6: T'ranstorm and Conguer '

rFrau

1'his group of: techniques solves a proplem by a
transformation to

a simpler/more convenient instance ofithe same
proplem (instance simplification)

a different representation ofithe same Instance
(representation change)

a different problem for whichian algorithm is
already available (problem reduction)
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0.1 Instance simplification - Presorting

I'rr

rVrau
Solve a problem’s instance by transtforming it into

another simpler/easier instance ofithe same problem

Presorting

Many: problems involving lists are easier When list IS sorted, ..
Serlgenlinle
computing the median (selection problem)
checking ifrall elements: are distinct (element uniqueness)

AlSo:

T'opological sorting helps solving some problems for dags.
PFesorting IS Used In many geometric algorithmes.
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How fast can We sort ?
s

rVrau
Efficiency of algorithms involving sorting depends on

efficiency, ofisorting.

Theorem (see Sec. 11.2): [log,n!|=n log,n comparisons are
necessary. in the Worst case to sort a list of size n by any

comparison-based algorithm.

Note: About nlog, N comparisons are also sufficient to sort
array of size n (by Mergesort).
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Searching with presorting '

Problem: Search for a given Kiin A[0..n-1]

Presorting-based algorithm:
Stage 1 Sort the array by an efficient sorting algorithm
Stage 2 Apply binary search

Efficiency: ®(nlog n) + O(log n) = G(nlog n)

Good or: had?

\Why dowe have our: dictionaries, telephone directories, etc.
Sorted?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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Element Unigueness With presorting '

rFrau

Presorting-based algorithm
Stage 1: sort by efficient sorting algorithm (e.9. Mergesort)
Stage 2: scan array to check pairs ofiadjacent elements

Efficiency: O(nlog n) + O(n) = G(nlog n)

Brute force algorithm
Compare all'pairs ofielements

Efficiency: O(n?)

= | Another algorithm? Hashing

-

i
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6.2 Instance simplification — Gaussian Elimination
Given: A systemiof n linear equations in N unknowns With an
arpitrary coefficient matrix.

T'ransform to: An equivalent system of: n linear equations inn
unknowns With an upper: triangular coefficient matrix.

Solve the latter by substitutions starting with the last equation
and moving up to the first one.

Ay Xy + Xt ... Fa X, = by 81X+ X+ ... +a X, = by
8, X; + X, + ... +a, X, = b, Xy + oee + 85 %, = Dy
q
<‘anlxl T AnpXy Te.. T AnnXn = bn AnnXn = bn
ﬂ‘
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Gaussian Elimination (cont.)
r'rr

rFrau

'he transformation Is accomplisned by a sequence ofielementary
operations on the system’s coefficient matrix (which don’t

change the system’s solution):

fori<1ton-1do
replace eachi of the subsequent rows (Ite., Fows I+1, ..., n)

Py a difference between that row and an appropriate
multiple ofithe 1=th row tormake the new coefficient in
the I=th column of: that row 0

144
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Example ofi Gaussian Elimination

I'rr

Solve 2%, - 4%, + %= 6 =
Xy - X, +X;=11
X+ X, - X3=-3
Forward elimination
2 -4 1 6 2 4 1
s -1 1 11 row2-—(s/2)zrowl 0 5 -1/2
11 -1 -8 rows— (1/2)*rowl 0 3 -3/2 -
2 -4
0 5
0 0

O N O

FOWS—(3/5)* rOW2

1 6
-1/2 2
-6/5 -36/5
Backward substitution
Xg = (-36/5) / (-6/5) = 6
X, = (2+(1/2)*6) /5= 1
X = (6=6+4*1)/2 =2
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Pseucdocode andl Efficiency ofi Gaussian Elimination
rrr
Stage 15 Reduction to an upper-triangular matrix

fori < 1ton-1do

for < I+l to ndo
for k < 1'to n+1 do
All, k]l < Afj, K] - A, K] = A, 1] /AL, 1] /improve!

Stage 2: Back substitutions
for j < n downto 1 do

t<— 0
fork — j+ltondo
t<— t+ A[j, k] * X[K]
X[J] < (Al n+=1] - O Al); ]

<= Efficiency: ©(n°) + O(n?) = O(n°)

= o m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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6.8 Searching Problem

Problem: Given a (multr)set S ofikeys and a search
Key K find an occurrence o K in S; ifiany

Searching must e considered: in the context of:
file size (internal vs. external)
dynamics of data (static vs. dynamic)

Dictionary operations (dynamic data):
find (search)
INsert
delete

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| W

I'rr

10



Traxoenomy, of: Searching Algorithms '

LLISt searching e

seguential search
pINary search
Interpolation search

[iree searching
pInary search tree
pinary balanced trees: AVL trees, red-black trees
multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees

Hashing
open hashing (separate chaining)

closed hashing (open addressing)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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Binary Search Tiree
L.

Arrange keys ina binary tree with the binary search
lree property:

my CXample: s, S, 1, 10, 12, 7, 9

|

'
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Dictionary Operations on Binary Search T rees

I

Searching — straightforward

Insertion — search for key, Insert at leafwhere search terminated

Deletion — 3 Cases:
deleting key at a leaf
deleting key at node withisingle child
deleting key at node with two children

Efficiency depends of the tree’s height: |_|og2 nl < h < n-1,

withrheight average (random files) be about slog, n

Thus all'three operations have
WOFSt case efficiency: ©(n)
average case efficiency: &(log n)

.~Bonus: Inorder: traversal produces sorted: list

| gV
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6.3 Balanced Search Trees
'rr

Attractiveness of binary search tree I1s marred by the bad (Iinéa'r)‘
Worst-case efficiency. TWwo 1deas to overcome It are:

to rebalance binary search tree wWhen a new Insertion
makes the tree “too unbalanced

AVL trees
red-black trees

to allow more than one key per node ofia search tree
2-3 lrees
2-3-4/trees
B-trees

144
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Balanced trees: AV trees
'y

rVra
Definition  An AVLL tree IS a binary search tree inwhich, for

every node, the difference between the heights ofiits left and
right subtrees, called the balance factor, IS at most 1 (with
the height ofian empty tree defined as -1)

Tiree (a) 1s an AVLL tree; tree (b) 1s not an AVL tree

= A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
w Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15



Rotations

Ifia key insertion violates the balance requirement at some
node, the subtree rooted at that node IS transformed via one of

the four rotations. (The rotation Is always performed for a
subtree rooted at an “unbalanced” node closest to the new leaf.)

Single R-rotation Double LLR-rotation

A
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(Generallcase: Single R-rotation

single R-rotation

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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General case: Double LLR-rotation

double LR-rotation

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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AV tree construction - an example

Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7.

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
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Analysis oft AVLL trees
r'rr

n < 1.4404 log, (n + 2) - 1.3277
average height: 1.01 log,n + 0.1 for large n (found empirically)

Search and insertion are O(log n)
Deletion 1simore complicated but is also O(leg n)

Disadvantages:
freguent rotations
complexity

A similar idea: red-black trees (height of subtrees iIs allowed to
Ty JITTER DY UP O & TACLON O 2)

= o m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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Multiway, Search Tirees

Definition. A multiway search tree Is a search tree that allows

more than one key: in the same node ofi the tree.

Definmition A node ofia search tree i1s called an n-node if: it

contains n-1 ordered keys (Which divide the entire key range
INto N intervals pointed to by the node’s n links to its children)

Note: Every node in a classical binary search tree Is a 2-node

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
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2-3 Tree
r'rr

Definition A 2-3 tree Is a search tree that
may have 2-nodes and 3-nodes
height-balanced (all'leaves are on the same level)

AAAAA

A 2-3 tree IS CoNstructed Py SUCCESSIVE INSERtIoNS of keys given,
with a new key always inserted into a leaf of the tree. Ifthe leaf
IS a 3-node, it’s split into two with the middle key promoted to

S the parent.

= iy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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2-3 tree construction — an example et

rFrau

Construct a 2-3 tree the list 9, 5, 8, 3, 2, 4, 7/

o o

Oco@@a@ o0 o0 @ O
o @ @

@ 0 ©000 0O

o
<> <> © o

SO0 a» 0 0000 0 00 O
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Analysis ofi 2-3 trees
r'rr

log;(n+1)-1< h < log, (n+1) -1

Search, insertion, and deletion are in ®(log n)

I'he 1dea ofi 2-3 tree can be generalized by allowing more
Keys Per node

2-3-4 trees
B-trees

144
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6.4 Heaps and Heapsort
1.

Defimition: A heap is a binary. tree with keys at its nodes (one
Key per node) such that:

IT IS essentially complete, 1.e., all'its levels are full'except
possibly the last level; where only some FIghtmost Keys may/.
e missing

The key at each node Is = keys at its children

11l
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Illustration of the heap’s definition

a heap not a heap not a heap

Note: Heap’s elements are ordered top down (along any path
down from Its root), but they are not ordered left to right

i1
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Some Important Properties ofia Heap '

rVrau
There exists exactly one essentially: complete binary tree
with n nodes. Its height Is equal to |_Iog2 n:

[he root contains the largest key

I'he subtree rooted at any node of a heap Is also a heap

A heap can be represented as an array.

144
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Heap’s Array Representation
1.
Store heap’s elements in an array (whose elements indexed,
for convenience, 1 to n) in top-down left-to-right order
Example:

9 1 2 3 45 6
© © — HE58man

[_eft child of node jis at 2j
Right child offnode jiis at 2j+1
Parent of node jis at [j/2]

Parental nodes are represented in the first| n/2] locations

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29
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Heap Construction (bottom-up)
rrr

rVrau
Step 0 Initialize the structure with keys in the order given

Step 1F Starting with the last (rightmost) parental node, fix the
heap rooted at it, if it doesn’t satisfy the heap
condition: keep exchanging 1t with its largest child

until'the heap condition holds

Step 2: Repeat Step 1 for the preceding parental nocde

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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Example ofi Heap Construction

Construct a heap for the list 2, 9, 7, 6, 5, 8

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
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Pseucdopodia of: bottom-up heap constructio;]"

Algorithm HeapBottomUp(H|[l..n|)
//Constructs a heap from the elements of a given array
// by the bottom-up algorithm
//Input: An array H|[l..n] of orderable items
//Output: A heap H[l..n]
for i +— |n/2| downto 1 do
ki, v+ H[E]
heap +— false
while not heap and 2+t < n do
F— 2%k
if 7 <n //there are two children
if H[j] < H[7+1] j+i+1
if v > H[j]
heap + true
else H[k| — H[j]; k+ ]
Hk| « v

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.



HeapSort
I'rf

Stage 15 Construct a heap for a given list ofi n keys

Stage 2: Repeat operation ofi root removal n-1 times:

EXchange keys in the root and in the last
(rightmost) leaf:

[Decrease heap size by 1

Ifinecessary, swap new root with larger child tuntil
the heap condition holds

144
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Example of: Sorting by Heapsort

Sortthe list 2, 9, 7, 6, 5, 8 by heapsort

Stage 1 (heap construction)
!

2

© O IN N

9

D IN © |©

O O OO0 OO

0

N © O O

S

o1 O1 O1 O1

O

~ N =

Stage 2 (root/max removal)

9

o1 01l N N 01| o
N O O 6O O O

O
O
-
-
S

2 5 7
2 5|9
2 5|9
2(8 9
2|8

57 8

g
g
5(7 8 9
g
g
g

2(6 7 8
216 7 8
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Analysis ofi Heapsort
J : I

Stage 1: Build heap for a given list of:n keys
worst-case
C(n)= X, 2(h-2" = 2(n-Ilog,(n+ 1)) e ®(n)

# nodes at
level |

Stage 2: Repeat operation of: root removal n-1 times (fix heap)
WOrSt-Case -1
C(n) = X 2log, i € ®(nlogn)
il
Both Worst-case and average-case efficiency: ®(nlogn)
In-place: yes
Sar Stability: no (e.g., 1 1)

= o m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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Priority QUueue
e I

rVrau
A priority queue Is the ADT of:a set of elements with

numerical priorities With the following operations:
find element with highest priority
delete element with nighest priority
Insert element with assigned priority (see below)

Heap IS a very efficient way, for implementing priority qUeUes

T'Wo ways to handle priority queue i which
nighest priority = smallest number:

144
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Insertion of a New Element into a Heap
rrr
Insert the new element at last position in heap.

Compare It withiits parent and, 1f 1t violates heap condition,

exchange them
Continue comparing the new element with nodes up the tree
until the heap condition Is satisfied

Example: Insert key 10

o o 10
o o o 10 o o
O 00 © 06 606 0 0 00 O
Ty
—= Efficiency: O(log n)
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson oo
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6.5 Horner’s Rule For Polynomial Evaluation

I

Given a polynomial ofidegree n
p(X) =ax"+a X" +... +ax+a,
and a specific value of: X, find the value of p at that point.

T\Wo brute-force algorithmes:

P« 0 P< a,;; Power<« 1
f.or 1'<— n downto 0 do for 1< 1 tondo
power « 1 POWEL < POWELr = X
for jj«< 1 toldo P < p+a* power
POWEL < POWer = X return p
P< P+ a = power
— rFeturnp
|<~
o m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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Horner’s Rule

I'rr

Example: p(x) = 2x* - x>+ 3x? + x -5 =
= X(2%x° - X2+ 3x + 1) -5=
= X(X(2x?-%x+3) + 1) -5=
= X(X(X(2x-1) +3) + 1) -5
Supstitution into the last formula leads to a faster algorithm

Same sequence of computations are obtained by simply,
arranging the coefficient in a table and proceeding as follows:

coefficients 2 -1 3 1 -5
X=3
=
~ -
= o m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson .
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Horner’s Rule pseudocode
r'rs

ALGORITHM Horner(P[0..n], x)

/[Evaluates a polynomial at a given point by Horner’s rule
/[Input: An array P[0..n] of coefficients of a polynomial of degree n
// (stored from the lowest to the highest) and a number x

//Output: The value of the polynomial at x
p < P[n]
fori < n —1downto O do
p < x*p+ P[i]
return p

Efficiency of Horner’s Rule: # multiplications = # additions = N

Synthetic advision oft p(x) by (%-X;)
Example: Let p(x) = 2x¢ - x5 + 3x2 + % - 5. Find p(x)/(x-3)

iid
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Computing & (revisited)
r'rs

LLeft=to-right hinary exponentation

Initialize product accumulator by 1.

Scan n’s binary expansion from left to right and do the

following:

Ifithe current binary digit 1s 0, square the accumulator (S);

Ifithe binary digit I1s 1, square the accumulator and multiply it
py a (SM).

Example: Compute a*°. Here, n= 13 = 1101,

pINary rep. ofi 13: 1 1 0, 1
SM SIM S SIM
accumulator: 1 1?*a=a a**a=a’ (a’)°=a’ (a)**a=a's
<= (computed left-to-right)
= iy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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|Left=to-right binary exponentiation

ALGORITHM LeftRightBinaryExponentiation(a, b(n))

//Computes a" by the left-to-right binary exponentiation algorithm
[Input: A number a and a list b(n) of binary digits b,, .. ., by
I in the binary expansion of a positive integer n
[/Output: The value of a”"
product < a
fori < I — 1 downto 0 do
product < product * product
it b; =1 product < product *a
return product

I'r!

Efficiency: b'< Mi(n)<2b where b =[log,n]+ 1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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Computing a" (cont.) T

rVrau
SCan n’s binary expansion frrom right to left and compute a" as

the product of terms a2* corresponding to 1°s in this expansion.

Example Compute a' by the right-to-left binary exponentiation.
Here, n =15 = 1101,

1 1 0 1 _
at al a2 a = a2 terms
a® * ar * a . product

(Ccomputed right-to-left)

Efficiency: same as that oftleft-to-right binary exponentiation

144
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Right-to-left binary exponentation

ALGORITHM RightLeftBinary Exponentiation(a, b(n))

[/Computes a” by the right-to-left binary exponentiation algorithm
[/Input: A number a and a list b(n) of binary digits by, .. ., by
I in the binary expansion of a nonnegative integer n

//Output: The value of a"
EI'

I'r!

term <—a /linitializes a
it bo =1 product < a
else product <1
fori — 1to [ do
term < term % term
if b; =1 product < product x term
return product

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 6 ©2012 Pearson
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6.6 Problem Reduction
'rr

rVrau
[this variation ofi transform-and-conquer: solves a problem by
a transtorming It into different problem for which an
algorithm is already available.

1'0 be ofi practical valtie, the combined time ofithe
transformation and selving the other problem should e
smaller than solving the problem as given by another:
method.

144
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Examples ofi Solving Problems by Reduction

144

I'rs

rVra
computing lcm(m, n) via compuiting ged(m, n)

counting nuMBEr ofi paths ofilength n'in a graph by raising
the graph’s adjacency matrix to the n-th power

transforming a maximization problem to a minimization
problem and vice versa (also, min-heap construction)

linear programming (Knapsack problem can be formulated
as linear programming problem)

reduction to graph problems (e.q., solving puzzles via state-
Space graphs)
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