Chapter 5: Divide-and-Conguer
r'rs

rrau

T'he most-well'known algorithm: design strategy:

Divide instance ofi problem into two or more
smaller instances

Solve smaller Instances recursively

Obtain selution to original (Iarger) instance by
combining these solutions

1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

Divide-and-Conguer Trechnigue (cont.)

(11,

a problem of size n

subproblem 1 subproblem 2
of size n/2 of size n/2

a solution to a solution to
subproblem 1 subproblem 2

a solution to
the original problem

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

111

| g

1

Divide-and-Conguer Examples
r'rs

Sorting: mergesort and guicksort
Binary tree traversals
Multiplication of large integers

Matrix multiplication: Strassen’s algorithm

Closest-pair and convex-hull algorithms

Binary search: decrease-by-halfi(or degenerate divide&.cong.)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

General Divide-and-Conguer: RECUErENCE

T(n) = al(n/b) + f(n) where f(n) e ®(n%), d=0

Master: Theorem: Ifa<hb? T(n) € G(nY
Ifa=h% T(n) e ®n%log n)
Ifa>hd, T(n) e ®MN'%b2)

Note: The same results hold with O Instead of: ®.

Examples: 1(n) =4T1(n/2) + n = 1(n) e ?
T(n) =4T(n/2) + N = T(n) e ?
T(n)=4T(n/2) + n° = T(n) e ?

1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rr

| g

141

5.1 IMIergesort

rr

v v
Split array Al0..n-1] in two about equal halves and make

copies ofieach half in arrays Brand C
SOrt arrays B and C recursively.
Merge sorted arrays B and C into array A as follows:

Repeat the following until'no elements remain in one of
the arrays:

compare the first elements in the remaining
LINPrOcessed portions ofithe arrays

copy. the smaller of: the two into A, while
Incrementing the index mdicating the UNpProcessead
portion ofithat array.

Once all'elements 1n one of the arrays are pProcessed,
copy. the remaining tunprocessed elements from the other
array into A.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseucdocode off Mergesort

ALGORITHM Mergesort(A[0..n —1])

/[Sorts array A[0..n — 1] by recursive mergesort

//Input: An array A|0O..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
ifn>1

copy A[0..|n/2] — 1] to B[0..|n/2] — 1]

copy A[|n/2]..n —1]to C[0..[n/2] — 1]
Mergesort(B[0..|n/2] — 1])
Mergesort(C|0..[n/2] — 1])
Merge(B, C, A)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseucocode of Merge

I'rr

ALGORITHM Merge(B[0..p — 1], C[0..g — 1], A[O0..p +g — 1])

//Merges two sorted arrays into one sorted array

[Input: Arrays B[0..p — 1] and C[0..g — 1] both sorted

//Output: Sorted array A[0..p + g — 1] of the elements of B and C
[<0, <0, k<0
whilei < pand j < ¢ do

if Bi] < C[j]

Alk] < Bli]; i < i +1

else A[k] < C[j], j«<j+1

k<—k+1
ifi =p

copy Clj..g — 1]to Alk..p + g — 1]
else copy Bli..p — 1] to Alk..p +q — 1]

-
m

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

A

| g

iid

Mergesort Example

0 HEEEHBOD

12345789

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

r'rr

Analysis of: Mergesort
r'rs

All'cases have same efficiency: O(n log n)

Number: oficomparisons in the Worst case Is close to
theoretical minimum for comparison-nased sorting:

[log, nll = nlog,n - 1.44n
Space requirement: ©(n) (not in-place)

Can be iImplemented without recursion (bottom-up)

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

111

5.2 Quicksort
; 0

Select a pivot (partitioning element) — here, the first element

Rearrange the list so that all'the elements in the first s
positions are smaller than or egual to the pivot and all the
elements 1in the remaining n-s positions are larger than or
equal to the pivot (see next slide for an algorithm)

Alil=p Ali]zp
Exchange the pivot with the last element in the first (1.e., <)

subarray — the pivot I1s now i its final position
SOrt the tWo subarrays Fecursively

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

A

| g

QuiIcksort: Seucdocode
'yl

ALGORITHM Quicksort(All..r])
/[Sorts a subarray by quicksort
/[Input: Subarray of array A[0..n — 1], defined by its left and right
/1 indices [/ and r

//Output: Subarray A[l..r|sorted in nondecreasing order
ifl <r
s < Partition(A[l..r]) //s is a split position
Quicksort(All..s — 1])
Quicksort(Als + 1..r])

iid

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Hoare’s Partitioning Algorithm

ALGORITHM HoarePartition(All..r])

[[Partitions a subarray by Hoare’s algorithm, using the first element
Il as a pivot
[[Input: Subarray of array A[0..n — 1], defined by its left and right
[l indices [and r (I < r)
[/Output: Partition of A[l..r]. with the split position returned as
[/ this function’s value
p <« All]
i< j<—r+1
repeat
repeat i < i + 1 until A[i]> p
repeat j «— j — luntil A[j]< p
swap(A[i], A[j])
until i = j
swap(Ali], A[j]) //undo last swap wheni = j
swap(A[l], A[j])
return j

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

141

Quicksort Example

o o 1 96 2 4 7

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

[11.

13

Analysis ofi QuUICKSOrt
PRSI0 I

rrau

Best case: split in the middie — &(n log n)
\Worst case: sorted array! — O(n?)
AvVerage case: random arrays — O(n log n)

Improvements:
petter pivot selection: median of three partitioning
switch to insertion sort on small subarrays
elimination off Fecursion

These combine to 20-25% Improvement

Considered the method of:choice for internal sorting offlarge
"= arrays (n=10000)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

i

-
| &

5.8 Binary Tiree Algorithms
r'rs

rVru
Binary tree Is a divide-and-conguer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorader)
Algorithm Inorder(T)

Il = @ A a
Inorder(Ti.c) o C b C
print(root of: T) d e e « (d e
Inorader (T, - e e

- Efficiency: ©(n)

|

-
| &

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

- .

-
| &

¥

Binary Tiree Algorithms (cont.)

EX. 2: Computing the height ofia binary tree
o

n(T) = max{h(Ty), h(T)F + 1 1f =98 and

(@) =-1

Efficiency: ©(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

r'rr

16

5.4 Multiplication ofi Large Integers I

Consider the problem off multiplying two (large) n-digit inte'ge'rs‘
represented by arrays of their digits such as:

A = 12345676901857966429 B = 61694521264620912556

1'he gracde-school algorithm:
ay ... A
b, b,... b,
(le) d11(:112 dln
(dZO) d21(:122 d2n

(dno) dnldnz dnn
<= Efficiency: nzone-digit multiplications

R m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
o Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

First Divide-and-Conguer Algorithm '

A small examples A = Biwhere A = 21385 and B = 4014 L

A= (21-102 + 35), B = (40 -102 + 14)
So, A * B = (21 -102 + 35) * (40 -102 + 14)
— 21 % 40 -10* + (21 * 14 + 35 # 40) -102 + 35 * 14

In general; ITA = AA; and B = BB, (Where A and Brare n-digit,
A Ay, By, B; are ni2-aigit nUMMBErs),

AxB=A*B;-10" + (A * B, + A, % B;) - 107+ A, * B,
Recurrence for the number: ofione-digit multiplications M(n):
M(n) = 4M(n/2), M(1) =1

Smpo0lUTION: (1) = N
- my

R m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
o Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

1

Second Divide-and-Conguer Algorithm’"

rrau

AxB=A*B-10" + (A * B, + A, % By) - 1072+ A, * B,

T'he 1dea Is to decrease the number off multiplications firom 4 to 3:
(Ag A)= (By £ By) = A By (A By = A % By) 40 B

Iie5 (A # Bo A0 # BY) = (A A0) (B + B3) = A+ B A * B

which requires only 3 multiplications at the expense ofi (4-1) extra
add/sulb:.

Recurrence for the number of multiplications M(n):
M(n) = sM(n/2), M(1) =1

Solution: M(n) = 3'°921'= 00925~ n 1585

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Example of [Large-Integer Multiplication
I

A=AA,and B =B,B, S

AxB=A *B;-10" + (A;*B,+A,*B,) 10"+ A, * B,

(Apx Byt Ay By) = (AL +A;) * (B +B,) -A * B - Ay * By

Example: A*B = 2135 * 4014 andn =4

A =21 A,=35 By =40 B,=14

A X By =21 x40 = 840

A, X B, =35 X 14 =490

(A{+A,) X (By+B,) = (21 4+ 35) x (40 + 14) = 3,024

(A X B,) + (A, X B,) = 3,024 — 840 — 490 = 1,694

<= AX B =840 x 10000 + 1694 x 100 + 490 = 8,569,890

|<
—~ 20

Example of [Large-Integer Multiplicatio'n ’

rrau
Example: 21385 * 4014
¢ =axb=(a110"? + ag) = (b;10"? + by)
= (ay * b)) 10" 4 (ay * by + ag * b)) 10"? + (agy * by)
= E?_]_On + IE.']-l{]'ﬂ'?rE + Cﬂ,
¢y = ay * by 1s the product of their first halves,
co = ag * by 1s the product of their second halves,
c1 = (ay + ag) * (by + by) — (¢ + ¢p) 1s the product of the sum of the
a’s halves and the sum of the b’s halves minus the sum of ¢, and c¢y.
- =
- m
|<
| & - 21

Strassen’s Matrix Multiplication

rr

rVru
Strassen observed [1969] that the product ofi two matrices can
e computed as follows:

COO COl AOO AOl BOO BOl
—_ x
ClO Cll AlO All BlO Bll

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Formulas for Strassen’s Algorithm

rr

rrau

My = (Agg + Agg) # (Bog + Byy)
M5 = (A + Aqg) * By
Mz = Agg * (Bpy = Bia)
M, = Aq * (Byg - Byg)
ME = (Agy + Agg) * By
Mp = (Aqg - Ago) * (Bog + Boy)

M= = (Agy - Arg) = (Big + Biy)

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Analysis of Strassen’s Algorithm

rr

rrau
Ifin 1S not a poewer: ofi 2, matrices can be padded with zZeros.

Number off multiplications:
Mi(n) = 7M(n/2), M(1) =1

Solution: M(n) = 7'°92n = 0827~ 12607 /s, 03 of brute-force alg.

Algorithms with better asymptotic efficiency are known but they.
are even more complex.

1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

24

5.5 Closest-Pair Problem by Divide-and-Conquer”l

rrau

Step 1 Divide the points given into two subsets P and P, by a
vertical line x = m so that halfithe points lie to the Ieft or on
the line and halfithe points lie to the right or on the line.

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

| g

Closest Pair by Divide-and-Conguer: (cont.) 1Y,

rrau

Step 2 kind recursively the closest pairs for the left and right
sulsets.

Step's Setd= min{a;, d.;
\We can limit our attention to the points in the symmetric
vertical'strip S ofiwidth 2d'as possible closest pair. (‘Tihe

poInts are stored and pProcessed in INcreasing order: of
therr y cooradinates.)

Step'4 Scan the points in the vertical strip S firomi the lowest up.
For every point p(y) in the strip, INSPeCt poInts in
IN the strip that may be closer to pthan d. There can be
Nno more than ssuch points followang pron the strip list!

141

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

| g

1

Efficiency ofithe Closest-Pair Algorithm

Running time of the algorithm is described by
T(n) = 2T(n/2) + M(n), where M(n) € O(n)

By the Master Tiheorem (With a=2, b =2, d=1)
1(n) e O(nlog n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rr

rrau

27

unickhullAlgorithm
= : 'y

. . . rea
Convex hull: smallest convex set that includes given points
AsSSUmMEe points are sorted by x-coordinate values
Identify extreme paints Py and P5 (leftmost and rightmost)

Compute upper hull recursively:
find point P, that is farthest away from line P;P;
compute the upper: hull'of the points to the left ofiline PP
compute the upper: hull ofithe points to the left ofiline P

Compute lower hulliinia similar manner
P

max s

: P,

@ S

meaX

i

meaX

()

P, - .

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

|

- m
-y
- m

| g

Efficiency of: @uicknull"Algorithm '

Einding point farthest away firom line P, P; canbe done in

[Inear time
Time efficiency:
worst case: O(n?) (as quicksort)

average case: O(n) (uUnder reasonable assumptions about
distripution of points given)

ITipoints are not initially sorted by X-coordinate value, this
can be accomplishediin O(nlog n) time

Several' O(n log n)algorithms for convex hulliare known

1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

29

	Slide 1: Chapter 5: Divide-and-Conquer
	Slide 2: Divide-and-Conquer Technique (cont.)
	Slide 3: Divide-and-Conquer Examples
	Slide 4
	Slide 5: 5.1 Mergesort
	Slide 6: Pseudocode of Mergesort
	Slide 7: Pseudocode of Merge
	Slide 8: Mergesort Example
	Slide 9: Analysis of Mergesort
	Slide 10: 5.2 Quicksort
	Slide 11: Quicksort: Seudocode
	Slide 12: Hoare’s Partitioning Algorithm
	Slide 13: Quicksort Example
	Slide 14: Analysis of Quicksort
	Slide 15: 5.3 Binary Tree Algorithms
	Slide 16: Binary Tree Algorithms (cont.)
	Slide 17: 5.4 Multiplication of Large Integers
	Slide 18: First Divide-and-Conquer Algorithm
	Slide 19: Second Divide-and-Conquer Algorithm
	Slide 20: Example of Large-Integer Multiplication
	Slide 21: Example of Large-Integer Multiplication
	Slide 22: Strassen’s Matrix Multiplication
	Slide 23: Formulas for Strassen’s Algorithm
	Slide 24: Analysis of Strassen’s Algorithm
	Slide 25: 5.5 Closest-Pair Problem by Divide-and-Conquer
	Slide 26: Closest Pair by Divide-and-Conquer (cont.)
	Slide 27: Efficiency of the Closest-Pair Algorithm
	Slide 28: Quickhull Algorithm
	Slide 29: Efficiency of Quickhull Algorithm

