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Chapter 5: Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more 

smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by 

combining these solutions
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Divide-and-Conquer Technique (cont.)

subproblem 2 

of size n/2

subproblem 1 

of size n/2

a solution to 

subproblem 1

a solution to

the original problem

a solution to 

subproblem 2

a problem of size n
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Divide-and-Conquer Examples

Sorting: mergesort and quicksort

Binary tree traversals

Multiplication of large integers

Matrix multiplication: Strassen’s algorithm

Closest-pair and convex-hull algorithms

Binary search: decrease-by-half (or degenerate divide&conq.)
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General Divide-and-Conquer Recurrence

T(n) = aT(n/b) + f (n)   where f(n)  (nd),   d  0

Master Theorem:    If a < bd,     T(n)  (nd) 

                                  If a = bd,     T(n)  (nd log n) 

                                  If a > bd,     T(n)  (nlog b a ) 

Note: The same results hold with O instead of .

Examples: T(n) = 4T(n/2) + n    T(n)  ?

                   T(n) = 4T(n/2) + n2   T(n)  ?

                   T(n) = 4T(n/2) + n3   T(n)  ?
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5.1 Mergesort

Split array A[0..n-1] in two about equal halves and make 
copies of each half  in arrays B and C

Sort arrays B and C recursively

Merge sorted arrays B and C into array A as follows:

• Repeat the following until no elements remain in one of 
the arrays:

– compare the first elements in the remaining 
unprocessed portions of the arrays

– copy the smaller of the two into A, while 
incrementing the index indicating the unprocessed 
portion of that array 

• Once all elements in one of the arrays are processed, 
copy the remaining unprocessed elements from the other 
array into A.
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Pseudocode of Mergesort
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Pseudocode of Merge
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Mergesort Example

8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9
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Analysis of Mergesort

All cases have same efficiency: Θ(n log n) 

Number of comparisons in the worst case is close to 

theoretical minimum for comparison-based sorting: 

                   log2 n!   ≈    n log2 n  - 1.44n

Space requirement: Θ(n) (not in-place)

Can be implemented without recursion (bottom-up)
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5.2 Quicksort

Select a pivot (partitioning element) – here, the first element

Rearrange the list so that all the elements in the first s 

positions are smaller than or equal to the pivot and all the 

elements in the remaining n-s positions are larger than or 

equal to the pivot (see next slide for an algorithm)

Exchange the pivot with the last element in the first (i.e., ) 

subarray — the pivot is now in its final position

Sort the two subarrays recursively

p

A[i]p A[i]p



Quicksort: Seudocode
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Hoare’s Partitioning Algorithm
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Quicksort Example

5   3   1   9   8   2   4   7
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Analysis of Quicksort

Best case: split in the middle — Θ(n log n) 

Worst case: sorted array! — Θ(n2) 

Average case: random arrays — Θ(n log n)

Improvements:

• better pivot selection: median of three partitioning 

• switch to insertion sort on small subarrays

• elimination of recursion

These combine to 20-25% improvement

Considered the method of choice for internal sorting of large 

arrays (n ≥ 10000)
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5.3 Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)

Algorithm Inorder(T)

if T           a       a  

    Inorder(Tleft)                 b           c               b            c

    print(root of T)                    d        e       •   •    d      e

    Inorder(Tright)                                                    • • • •

Efficiency: Θ(n) 
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Binary Tree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree 

T TL R

h(T) = max{h(TL), h(TR)} + 1  if T    and  

h() = -1

Efficiency: Θ(n) 
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5.4 Multiplication of Large Integers 

Consider the problem of multiplying two (large) n-digit integers 
represented by arrays of their digits such as:

A = 12345678901357986429   B = 87654321284820912836

The grade-school algorithm:

  a1  a2 …  an

                b1  b2 …  bn

    (d10) d11d12 … d1n

         (d20) d21d22 … d2n

        … … … … … … … 

(dn0) dn1dn2 … dnn

 

Efficiency: n2 one-digit multiplications
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First Divide-and-Conquer Algorithm

A small example: A  B where A = 2135 and B = 4014

A = (21·102 + 35),  B = (40 ·102 + 14)

So, A  B = (21 ·102 + 35)  (40 ·102 + 14) 

      = 21  40 ·104  + (21  14 + 35  40) ·102 + 35  14

In general, if A = A1A2 and B = B1B2   (where A and B are n-digit, 

A1, A2, B1, B2 are n/2-digit numbers),

A  B = A1  B1·10n  + (A1  B2 + A2  B1) ·10n/2 + A2  B2

Recurrence for the number of one-digit multiplications M(n): 

                             M(n) = 4M(n/2),   M(1) = 1

Solution: M(n) = n2 
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Second Divide-and-Conquer Algorithm

A  B = A1  B1·10n  + (A1  B2 + A2  B1) ·10n/2 + A2  B2

The idea is to decrease the number of multiplications from 4 to 3:  

   (A1 + A2 )  (B1 + B2 ) = A1  B1 + (A1  B2 + A2  B1) + A2  B2,

I.e., (A1  B2 + A2  B1) = (A1 + A2 )  (B1 + B2 ) - A1  B1 - A2  B2, 

which requires only 3 multiplications at the expense of (4-1) extra 

add/sub.

Recurrence for the  number of multiplications M(n):

                             M(n) = 3M(n/2),   M(1) = 1

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585 



20

Example of Large-Integer Multiplication 

Example: A*B = 2135  4014 and n = 4

A  B = A1  B1·10n  + (A1  B2 + A2  B1) ·10n/2 + A2  B2

(A1  B2 + A2  B1) = (A1 + A2 )  (B1 + B2 ) - A1  B1 - A2  B2

A = A1A2 and B = B1B2 
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Example of Large-Integer Multiplication 

Example: 2135  4014
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Strassen’s Matrix Multiplication

Strassen observed [1969] that  the product of two matrices can 

be computed as follows:

C00    C01                A00    A01                B00    B01

                              =                             *

C10    C11                A10    A11                B10    B11

                            M1   + M4  - M5 + M7                        M3 + M5 

                             =                   

                           M2 + M4                                               M1   + M3  - M2 + M6 
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Formulas for Strassen’s Algorithm

M1 = (A00 + A11)  (B00 + B11)

M2 = (A10 + A11)  B00

M3 = A00  (B01 - B11)

M4 =  A11  (B10 - B00)

M5 = (A00 + A01)  B11

M6 = (A10 - A00)  (B00 + B01)

M7 = (A01 - A11)  (B10 + B11)
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Analysis of Strassen’s Algorithm

If n is not a power of 2, matrices can be padded with zeros.

Number of multiplications:

                                 M(n) = 7M(n/2),   M(1) = 1

Solution: M(n) = 7log 2n = nlog 27 ≈ n2.807    vs.  n3 of brute-force alg.

Algorithms with better asymptotic efficiency are known but they

are even more complex. 



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

5.5 Closest-Pair Problem by Divide-and-Conquer

Step 1  Divide the points given into two subsets Pl and Pr by a 

vertical line x = m so that half the points lie to the left or on 

the line and half the points lie to the right or on the line.

x = m

d l d
r

d d
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Closest Pair by Divide-and-Conquer (cont.)

Step 2  Find recursively the closest pairs for the left and right

     subsets.

Step 3   Set d = min{dl, dr}

             We can limit our attention to the points in the symmetric

      vertical strip S of width 2d as possible closest pair. (The

      points are stored and processed in increasing order of

      their y coordinates.)

Step 4   Scan the points in the vertical strip S from the lowest up.

      For every point p(x,y) in the strip, inspect points in

      in the strip that may be closer to p than d.  There can be

      no more than 5 such points following p on the strip list! 
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Efficiency of the Closest-Pair Algorithm

Running time of the algorithm is described by

                    T(n) = 2T(n/2) + M(n),  where M(n)  O(n) 

By the Master Theorem (with a = 2, b = 2, d = 1)

                                  T(n)  O(n log n)
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Quickhull Algorithm 

Convex hull: smallest convex set that includes given points

Assume points are sorted by x-coordinate values

Identify extreme points P1 and P2  (leftmost and rightmost)

Compute upper hull recursively:

• find point Pmax that is farthest away from line P1P2

• compute the upper hull of the points to the left of line P1Pmax

• compute the upper hull of the points to the left of line PmaxP2

Compute lower hull in a similar manner

P1

P2

Pmax
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Efficiency of Quickhull Algorithm

Finding point farthest away from line P1P2 can be done in 

linear time

Time efficiency: 

• worst case: Θ(n2)  (as quicksort)

• average case: Θ(n) (under reasonable assumptions about

                                  distribution of points given)

If points are not initially sorted by x-coordinate value, this 

can be accomplished in O(n log n) time

Several O(n log n) algorithms for convex hull are known
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