Chapter 5: Divide-and-Conguer
r'rs

rrau

T'he most-well'known algorithm: design strategy:

Divide instance ofi problem into two or more
smaller instances

Solve smaller Instances recursively

Obtain selution to original (Iarger) instance by
combining these solutions
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Divide-and-Conguer Trechnigue (cont.)

(11,

a problem of size n

subproblem 1 subproblem 2
of size n/2 of size n/2

a solution to a solution to
subproblem 1 subproblem 2

a solution to
the original problem
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Divide-and-Conguer Examples
r'rs

Sorting: mergesort and guicksort
Binary tree traversals
Multiplication of large integers

Matrix multiplication: Strassen’s algorithm

Closest-pair and convex-hull algorithms

Binary search: decrease-by-halfi(or degenerate divide&.cong.)
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General Divide-and-Conguer: RECUErENCE

T(n) = al(n/b) + f(n) where f(n) e ®(n%), d=0

Master: Theorem: Ifa<hb? T(n) € G(nY
Ifa=h% T(n) e ®n%log n)
Ifa>hd, T(n) e ®MN'%b2)

Note: The same results hold with O Instead of: ®.

Examples: 1(n) =4T1(n/2) + n = 1(n) e ?
T(n) =4T(n/2) + N = T(n) e ?
T(n)=4T(n/2) + n° = T(n) e ?
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5.1 IMIergesort

rr

v v
Split array Al0..n-1] in two about equal halves and make

copies ofieach half in arrays Brand C
SOrt arrays B and C recursively.
Merge sorted arrays B and C into array A as follows:

Repeat the following until'no elements remain in one of
the arrays:

compare the first elements in the remaining
LINPrOcessed portions ofithe arrays

copy. the smaller of: the two into A, while
Incrementing the index mdicating the UNpProcessead
portion ofithat array.

Once all'elements 1n one of the arrays are pProcessed,
copy. the remaining tunprocessed elements from the other
array into A.
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Pseucdocode off Mergesort

ALGORITHM Mergesort(A[0..n —1])

/[Sorts array A[0..n — 1] by recursive mergesort

//Input: An array A|0O..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
ifn>1

copy A[0..|n/2] — 1] to B[0..|n/2] — 1]

copy A[|n/2]..n —1]to C[0..[n/2] — 1]
Mergesort(B[0..|n/2] — 1])
Mergesort(C|0..[n/2] — 1])
Merge(B, C, A)
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Pseucocode of Merge

I'rr

ALGORITHM Merge(B[0..p — 1], C[0..g — 1], A[O0..p +g — 1])

//Merges two sorted arrays into one sorted array

[Input: Arrays B[0..p — 1] and C[0..g — 1] both sorted

//Output: Sorted array A[0..p + g — 1] of the elements of B and C
[ <0, <0, k<0
whilei < pand j < ¢ do

if Bi] < C[j]

Alk] < Bli]; i < i +1

else A[k] < C[j], j«<j+1

k<—k+1
ifi =p

copy Clj..g — 1]to Alk..p + g — 1]
else copy Bli..p — 1] to Alk..p +q — 1]

-
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Mergesort Example

0 HEEEHBOD

12345789
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Analysis of: Mergesort
r'rs

All'cases have same efficiency: O(n log n)

Number: oficomparisons in the Worst case Is close to
theoretical minimum for comparison-nased sorting:

[log, nll = nlog,n - 1.44n
Space requirement: ©(n) (not in-place)

Can be iImplemented without recursion (bottom-up)

111
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5.2 Quicksort
; 0

Select a pivot (partitioning element) — here, the first element

Rearrange the list so that all'the elements in the first s
positions are smaller than or egual to the pivot and all the
elements 1in the remaining n-s positions are larger than or
equal to the pivot (see next slide for an algorithm)

Alil=p Ali]zp
Exchange the pivot with the last element in the first (1.e., <)

subarray — the pivot I1s now i its final position
SOrt the tWo subarrays Fecursively
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QuiIcksort: Seucdocode
'yl

ALGORITHM Quicksort(All..r])
/[Sorts a subarray by quicksort
/[Input: Subarray of array A[0..n — 1], defined by its left and right
/1 indices [/ and r

//Output: Subarray A[l..r|sorted in nondecreasing order
ifl <r
s < Partition(A[l..r]) //s is a split position
Quicksort(All..s — 1])
Quicksort(Als + 1..r])

iid
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Hoare’s Partitioning Algorithm

ALGORITHM HoarePartition(All..r])

[[Partitions a subarray by Hoare’s algorithm, using the first element
Il as a pivot
[[Input: Subarray of array A[0..n — 1], defined by its left and right
[l indices [ and r (I < r)
[/Output: Partition of A[l..r]. with the split position returned as
[/ this function’s value
p <« All]
i< j<—r+1
repeat
repeat i < i + 1 until A[i]> p
repeat j «— j — luntil A[j]< p
swap(A[i], A[j])
until i = j
swap(Ali], A[j]) //undo last swap wheni = j
swap(A[l], A[j])
return j
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Quicksort Example

o o 1 96 2 4 7
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Analysis ofi QuUICKSOrt
PRSI0 I

rrau

Best case: split in the middie — &(n log n)
\Worst case: sorted array! — O(n?)
AvVerage case: random arrays — O(n log n)

Improvements:
petter pivot selection: median of three partitioning
switch to insertion sort on small subarrays
elimination off Fecursion

These combine to 20-25% Improvement

Considered the method of:choice for internal sorting offlarge
"= arrays (n=10000)
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5.8 Binary Tiree Algorithms
r'rs

rVru
Binary tree Is a divide-and-conguer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorader)
Algorithm Inorder(T)

Il = @ A a
Inorder(Ti.c) o C b C
print(root of: T) d e e « (d e
Inorader (T, - e e

- Efficiency: ©(n)

|

-
| &
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Binary Tiree Algorithms (cont.)

EX. 2: Computing the height ofia binary tree
o

n(T) = max{h(Ty), h(T)F + 1 1f =98 and

(@) =-1

Efficiency: ©(n)
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5.4 Multiplication ofi Large Integers I

Consider the problem off multiplying two (large) n-digit inte'ge'rs‘
represented by arrays of their digits such as:

A = 12345676901857966429 B = 61694521264620912556

1'he gracde-school algorithm:
ay ... A
b, b,... b,
(le) d11(:112 dln
(dZO) d21(:122 d2n

(dno) dnldnz dnn
<= Efficiency: nzone-digit multiplications
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First Divide-and-Conguer Algorithm '

A small examples A = Biwhere A = 21385 and B = 4014 L

A= (21-102 + 35), B = (40 -102 + 14)
So, A * B = (21 -102 + 35) * (40 -102 + 14)
— 21 % 40 -10* + (21 * 14 + 35 # 40) -102 + 35 * 14

In general; ITA = AA; and B = BB, (Where A and Brare n-digit,
A Ay, By, B; are ni2-aigit nUMMBErs),

AxB=A*B;-10" + (A * B, + A, % B;) - 107+ A, * B,
Recurrence for the number: ofione-digit multiplications M(n):
M(n) = 4M(n/2), M(1) =1

Smpo0lUTION: (1) = N
- my
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Second Divide-and-Conguer Algorithm’"

rrau

AxB=A*B-10" + (A * B, + A, % By) - 1072+ A, * B,

T'he 1dea Is to decrease the number off multiplications firom 4 to 3:
(Ag A )= (By £ By ) = A By (A By = A % By) 40 B

Iie5 (A # Bo A0 # BY) = (A A0 ) (B + B3 ) = A+ B A * B

which requires only 3 multiplications at the expense ofi (4-1) extra
add/sulb:.

Recurrence for the number of multiplications M(n):
M(n) = sM(n/2), M(1) =1

Solution: M(n) = 3'°921'= 00925~ n 1585
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Example of [Large-Integer Multiplication
I

A=AA,and B =B,B, S

AxB=A *B;-10" + (A;*B,+A,*B,) 10"+ A, * B,

(Apx Byt Ay By) = (AL +A;) * (B +B,) -A * B - Ay * By

Example: A*B = 2135 * 4014 andn =4

A =21 A,=35 By =40 B,=14

A X By =21 x40 = 840

A, X B, =35 X 14 =490

(A{+A,) X (By+B,) = (21 4+ 35) x (40 + 14) = 3,024

(A X B,) + (A, X B,) = 3,024 — 840 — 490 = 1,694

<= AX B =840 x 10000 + 1694 x 100 + 490 = 8,569,890
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Example of [Large-Integer Multiplicatio'n ’

rrau
Example: 21385 * 4014
¢ =axb=(a110"? + ag) = (b;10"? + by)
= (ay * b)) 10" 4 (ay * by + ag * b)) 10"? + (agy * by)
= E?_]_On + IE.']-l{]'ﬂ'?rE + Cﬂ,
¢y = ay * by 1s the product of their first halves,
co = ag * by 1s the product of their second halves,
c1 = (ay + ag) * (by + by) — (¢ + ¢p) 1s the product of the sum of the
a’s halves and the sum of the b’s halves minus the sum of ¢, and c¢y.
- =
- m
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Strassen’s Matrix Multiplication

rr

rVru
Strassen observed [1969] that the product ofi two matrices can
e computed as follows:

COO COl AOO AOl BOO BOl
—_ x
ClO Cll AlO All BlO Bll

111
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Formulas for Strassen’s Algorithm

rr

rrau

My = (Agg + Agg) # (Bog + Byy)
M5 = (A + Aqg) * By
Mz = Agg * (Bpy = Bia)
M, = Aq * (Byg - Byg)
ME = (Agy + Agg) * By
Mp = (Aqg - Ago) * (Bog + Boy)

M= = (Agy - Arg) = (Big + Biy)

111
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Analysis of Strassen’s Algorithm

rr

rrau
Ifin 1S not a poewer: ofi 2, matrices can be padded with zZeros.

Number off multiplications:
Mi(n) = 7M(n/2), M(1) =1

Solution: M(n) = 7'°92n = 0827~ 12607 /s, 03 of brute-force alg.

Algorithms with better asymptotic efficiency are known but they.
are even more complex.

1
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5.5 Closest-Pair Problem by Divide-and-Conquer”l

rrau

Step 1 Divide the points given into two subsets P and P, by a
vertical line x = m so that halfithe points lie to the Ieft or on
the line and halfithe points lie to the right or on the line.

111
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Closest Pair by Divide-and-Conguer: (cont.) 1Y,

rrau

Step 2 kind recursively the closest pairs for the left and right
sulsets.

Step's Setd= min{a;, d.;
\We can limit our attention to the points in the symmetric
vertical'strip S ofiwidth 2d'as possible closest pair. (‘Tihe

poInts are stored and pProcessed in INcreasing order: of
therr y cooradinates.)

Step'4  Scan the points in the vertical strip S firomi the lowest up.
For every point p(y) in the strip, INSPeCt poInts in
IN the strip that may be closer to pthan d. There can be
Nno more than ssuch points followang pron the strip list!

141
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Efficiency ofithe Closest-Pair Algorithm

Running time of the algorithm is described by
T(n) = 2T(n/2) + M(n), where M(n) € O(n)

By the Master Tiheorem (With a=2, b =2, d=1)
1(n) e O(nlog n)
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unickhullAlgorithm
= : 'y

. . . rea
Convex hull: smallest convex set that includes given points
AsSSUmMEe points are sorted by x-coordinate values
Identify extreme paints Py and P5 (leftmost and rightmost)

Compute upper hull recursively:
find point P, that is farthest away from line P;P;
compute the upper: hull'of the points to the left ofiline PP
compute the upper: hull ofithe points to the left ofiline P

Compute lower hulliinia similar manner
P

max s

: P,

@ S

meaX

i

meaX

()

P, - .
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Efficiency of: @uicknull"Algorithm '

Einding point farthest away firom line P, P; canbe done in

[Inear time
Time efficiency:
worst case: O(n?) (as quicksort)

average case: O(n) (uUnder reasonable assumptions about
distripution of points given)

ITipoints are not initially sorted by X-coordinate value, this
can be accomplishediin O(nlog n) time

Several' O(n log n)algorithms for convex hulliare known

1
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