
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Chapter 5: Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more

smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by

combining these solutions

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Divide-and-Conquer Technique (cont.)

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Divide-and-Conquer Examples

Sorting: mergesort and quicksort

Binary tree traversals

Multiplication of large integers

Matrix multiplication: Strassen’s algorithm

Closest-pair and convex-hull algorithms

Binary search: decrease-by-half (or degenerate divide&conq.)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

General Divide-and-Conquer Recurrence

T(n) = aT(n/b) + f (n) where f(n)  (nd), d  0

Master Theorem: If a < bd, T(n)  (nd)

 If a = bd, T(n)  (nd log n)

 If a > bd, T(n)  (nlog b a)

Note: The same results hold with O instead of .

Examples: T(n) = 4T(n/2) + n  T(n)  ?

 T(n) = 4T(n/2) + n2  T(n)  ?

 T(n) = 4T(n/2) + n3  T(n)  ?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

5.1 Mergesort

Split array A[0..n-1] in two about equal halves and make
copies of each half in arrays B and C

Sort arrays B and C recursively

Merge sorted arrays B and C into array A as follows:

• Repeat the following until no elements remain in one of
the arrays:

– compare the first elements in the remaining
unprocessed portions of the arrays

– copy the smaller of the two into A, while
incrementing the index indicating the unprocessed
portion of that array

• Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the other
array into A.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

Pseudocode of Mergesort

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

Pseudocode of Merge

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Mergesort Example

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Analysis of Mergesort

All cases have same efficiency: Θ(n log n)

Number of comparisons in the worst case is close to

theoretical minimum for comparison-based sorting:

 log2 n! ≈ n log2 n - 1.44n

Space requirement: Θ(n) (not in-place)

Can be implemented without recursion (bottom-up)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

5.2 Quicksort

Select a pivot (partitioning element) – here, the first element

Rearrange the list so that all the elements in the first s

positions are smaller than or equal to the pivot and all the

elements in the remaining n-s positions are larger than or

equal to the pivot (see next slide for an algorithm)

Exchange the pivot with the last element in the first (i.e., )

subarray — the pivot is now in its final position

Sort the two subarrays recursively

p

A[i]p A[i]p

Quicksort: Seudocode

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Hoare’s Partitioning Algorithm

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Quicksort Example

5 3 1 9 8 2 4 7

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Analysis of Quicksort

Best case: split in the middle — Θ(n log n)

Worst case: sorted array! — Θ(n2)

Average case: random arrays — Θ(n log n)

Improvements:

• better pivot selection: median of three partitioning

• switch to insertion sort on small subarrays

• elimination of recursion

These combine to 20-25% improvement

Considered the method of choice for internal sorting of large

arrays (n ≥ 10000)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

5.3 Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)

Algorithm Inorder(T)

if T   a a

 Inorder(Tleft) b c b c

 print(root of T) d e • • d e

 Inorder(Tright) • • • •

Efficiency: Θ(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

Binary Tree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree

T TL R

h(T) = max{h(TL), h(TR)} + 1 if T   and

h() = -1

Efficiency: Θ(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

5.4 Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers
represented by arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836

The grade-school algorithm:

 a1 a2 … an

 b1 b2 … bn

 (d10) d11d12 … d1n

 (d20) d21d22 … d2n

 … … … … … … …

(dn0) dn1dn2 … dnn

Efficiency: n2 one-digit multiplications

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

First Divide-and-Conquer Algorithm

A small example: A  B where A = 2135 and B = 4014

A = (21·102 + 35), B = (40 ·102 + 14)

So, A  B = (21 ·102 + 35)  (40 ·102 + 14)

 = 21  40 ·104 + (21  14 + 35  40) ·102 + 35  14

In general, if A = A1A2 and B = B1B2 (where A and B are n-digit,

A1, A2, B1, B2 are n/2-digit numbers),

A  B = A1  B1·10n + (A1  B2 + A2  B1) ·10n/2 + A2  B2

Recurrence for the number of one-digit multiplications M(n):

 M(n) = 4M(n/2), M(1) = 1

Solution: M(n) = n2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Second Divide-and-Conquer Algorithm

A  B = A1  B1·10n + (A1  B2 + A2  B1) ·10n/2 + A2  B2

The idea is to decrease the number of multiplications from 4 to 3:

 (A1 + A2)  (B1 + B2) = A1  B1 + (A1  B2 + A2  B1) + A2  B2,

I.e., (A1  B2 + A2  B1) = (A1 + A2)  (B1 + B2) - A1  B1 - A2  B2,

which requires only 3 multiplications at the expense of (4-1) extra

add/sub.

Recurrence for the number of multiplications M(n):

 M(n) = 3M(n/2), M(1) = 1

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585

20

Example of Large-Integer Multiplication

Example: A*B = 2135  4014 and n = 4

A  B = A1  B1·10n + (A1  B2 + A2  B1) ·10n/2 + A2  B2

(A1  B2 + A2  B1) = (A1 + A2)  (B1 + B2) - A1  B1 - A2  B2

A = A1A2 and B = B1B2

21

Example of Large-Integer Multiplication

Example: 2135  4014

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of two matrices can

be computed as follows:

C00 C01 A00 A01 B00 B01

 = *

C10 C11 A10 A11 B10 B11

 M1 + M4 - M5 + M7 M3 + M5

 =

 M2 + M4 M1 + M3 - M2 + M6

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Formulas for Strassen’s Algorithm

M1 = (A00 + A11)  (B00 + B11)

M2 = (A10 + A11)  B00

M3 = A00  (B01 - B11)

M4 = A11  (B10 - B00)

M5 = (A00 + A01)  B11

M6 = (A10 - A00)  (B00 + B01)

M7 = (A01 - A11)  (B10 + B11)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

Analysis of Strassen’s Algorithm

If n is not a power of 2, matrices can be padded with zeros.

Number of multiplications:

 M(n) = 7M(n/2), M(1) = 1

Solution: M(n) = 7log 2n = nlog 27 ≈ n2.807 vs. n3 of brute-force alg.

Algorithms with better asymptotic efficiency are known but they

are even more complex.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

5.5 Closest-Pair Problem by Divide-and-Conquer

Step 1 Divide the points given into two subsets Pl and Pr by a

vertical line x = m so that half the points lie to the left or on

the line and half the points lie to the right or on the line.

x = m

d l d
r

d d

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

Closest Pair by Divide-and-Conquer (cont.)

Step 2 Find recursively the closest pairs for the left and right

 subsets.

Step 3 Set d = min{dl, dr}

 We can limit our attention to the points in the symmetric

 vertical strip S of width 2d as possible closest pair. (The

 points are stored and processed in increasing order of

 their y coordinates.)

Step 4 Scan the points in the vertical strip S from the lowest up.

 For every point p(x,y) in the strip, inspect points in

 in the strip that may be closer to p than d. There can be

 no more than 5 such points following p on the strip list!

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

Efficiency of the Closest-Pair Algorithm

Running time of the algorithm is described by

 T(n) = 2T(n/2) + M(n), where M(n)  O(n)

By the Master Theorem (with a = 2, b = 2, d = 1)

 T(n)  O(n log n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

Quickhull Algorithm

Convex hull: smallest convex set that includes given points

Assume points are sorted by x-coordinate values

Identify extreme points P1 and P2 (leftmost and rightmost)

Compute upper hull recursively:

• find point Pmax that is farthest away from line P1P2

• compute the upper hull of the points to the left of line P1Pmax

• compute the upper hull of the points to the left of line PmaxP2

Compute lower hull in a similar manner

P1

P2

Pmax

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

Efficiency of Quickhull Algorithm

Finding point farthest away from line P1P2 can be done in

linear time

Time efficiency:

• worst case: Θ(n2) (as quicksort)

• average case: Θ(n) (under reasonable assumptions about

 distribution of points given)

If points are not initially sorted by x-coordinate value, this

can be accomplished in O(n log n) time

Several O(n log n) algorithms for convex hull are known

	Slide 1: Chapter 5: Divide-and-Conquer
	Slide 2: Divide-and-Conquer Technique (cont.)
	Slide 3: Divide-and-Conquer Examples
	Slide 4
	Slide 5: 5.1 Mergesort
	Slide 6: Pseudocode of Mergesort
	Slide 7: Pseudocode of Merge
	Slide 8: Mergesort Example
	Slide 9: Analysis of Mergesort
	Slide 10: 5.2 Quicksort
	Slide 11: Quicksort: Seudocode
	Slide 12: Hoare’s Partitioning Algorithm
	Slide 13: Quicksort Example
	Slide 14: Analysis of Quicksort
	Slide 15: 5.3 Binary Tree Algorithms
	Slide 16: Binary Tree Algorithms (cont.)
	Slide 17: 5.4 Multiplication of Large Integers
	Slide 18: First Divide-and-Conquer Algorithm
	Slide 19: Second Divide-and-Conquer Algorithm
	Slide 20: Example of Large-Integer Multiplication
	Slide 21: Example of Large-Integer Multiplication
	Slide 22: Strassen’s Matrix Multiplication
	Slide 23: Formulas for Strassen’s Algorithm
	Slide 24: Analysis of Strassen’s Algorithm
	Slide 25: 5.5 Closest-Pair Problem by Divide-and-Conquer
	Slide 26: Closest Pair by Divide-and-Conquer (cont.)
	Slide 27: Efficiency of the Closest-Pair Algorithm
	Slide 28: Quickhull Algorithm
	Slide 29: Efficiency of Quickhull Algorithm

