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Chapter 4: Decrease-and-Conguer: '

rrau
Reduce problem instance to smaller instance of
the same problem

Solve smaller instance

Extend solution of:smaller: instance to obtain
solution to original instance

Can be implemented either top-cdown approach (With
FECUKSIVE solution), or

pottom-up, approach, also referred to as inductive or
incremental approach
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3 Types of Decrease and Conguer '

rra
Decrease by a constant (usually by 1):

INSErtion Sort
topological sorting
algorithms for generating permutations, SURSEts

[Decrease by a constant factor. (usually by half)
pINary search and bisection method
exponentiation by squaring
multiplication a la russe

Variable-size decrease
Euclid’s algorithm -- gcd(m, n) = gecd(n, m maod n).
selection by partition
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What’s the difference?

Consider the problem ofiexponentiation: Compute a”

[Decrease by one:

fn—=1-a ifn=0,

Jn)= I 1 if n =0,

Decrease by constant factor:

if n 1s even and positive,

-a 1fn1s odd.
itn=0.
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4.1 Insertion Sort
'y

To sort array A[0..n-1], sort A[0:.n-2] recursively and "

then insert A[n-1] iniits proper: place among the sorted
Al0..n-2]

Usually implemented bottom: up (nenrecursively)

Example: Sort 6, 4, 1, 8, 5
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Pseudocode off Insertion Sort

I'rr
ALGORITHM InsertionSort(A[0..n — 1])

/[Sorts a given array by insertion sort
/Input: An array A[0..n — 1] of n orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
fori < 1ton—1do

v < Ali]

j<«—i—1

while j > 0 and A[j] > v do

A[j +1] < A[j]

J<j—1
Alj+ 1]« v
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Analysis oft Insertion Sort
rrs

Time efficiency S
CWOI’St(n) = n(n'l)/z = ®(n2)
C. (M) =n4 e O(n)

C.(N)=n-1 e 6O(n) (alsofast on almost sorted arrays)
Space efficiency: in-place

Stability: yes

Best elementary sorting algorithm overall

Binary, INSertion sort
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4.2 [Dags and Topological Sortin
0 PO10Q 0 Y’

A dag: a directed acyclic graph ite. a directed graph with'no =
(cirected) cycles

a dag not a dag

ArISe In modeling many problems that involve prerequisite
constraints (construction projects, document version control)

\V/ertices of a dag can be linearly orcerec so that for every ecge
It starting vertex is listed before Its ending vertex (topolagical

Sy SOCtING). BEINg a dag 1S also a necessary conaition for:

“= topological sorting be possible.
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Topological Sorting Example

Order the following rtems in a food chain
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DES-based Algorithm

DES-based algorithm for topological sorting weu

Perform DES traversal; noting the order VErtices are
popped offithe traversal'stack

Reverse order solves topological sorting problem
Back edges encountered?— NOT a dag!

Example:

 EfficiEncy:
- m
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Source Removal Algorithm

14
Source removal algorithm S

Repeatedly identify, and remoyve a source (a Vertex with no
Incoming edges) and all'the edges imcident to 1t untilferther
no vertex Is left (problem i1s solved) or there IS No SeUrCe
among remaining Vertices (not a dag)

Efficiency: same as efficiency ofithe DES-based algorithm

Example:

11
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4.3 Generating Permutations
rrs

rrau
Minimal-change decrease-by-one algorithm
Ifin = 1 return 1; otherwise, generate recursively the list of:all
permutations of 12...n-1 and then insert n into each of
those permutations by starting with inserting n into 12...n-1
Py moving right to left and then switching direction for:
each new permutation

Example: n=3

start 1

INSert 2 into 1 right to'left = 12 2

INSErt S into 12 right to left 125 152 312
insert 3'nto 21 left to right 321 231 213

111
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Other permutation generating algorithms
rrs

rrau

Johnson-Tirotter (p. 145)
[_exicographic-order algorithm (p. 146)

Heap’s algorithm (Problem 4 in Exercises 4.3)

111
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Generating Sukbsets: (1) et

subsets

{a1}
{ai} {az} {ay, ar}
{ai} {ay} {a), a} {as} {ay, a3} {ar, a3} {ay, a, a3}

FIGURE 4.10 Generating subsets bottom up.

i

i
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Generating Subsets: (2)
I
Binary reflected Gray code: minimal-change algorithm for

generating 2" bit strings corresponding to all the subsets of
an n-element set where n > 0

I n=1 make list Lt ofitwo bit strings 0:.and 1
else
generate recursively list LL1 of bit strings ofilength n-1
copy. list L1 ini reverse order to get list L2
add O'in front of'each bit string i st L1
add 1" in front of'each bit string in st L2
append L2 to L1 to get Lt

QAOIEANE ;; oirings 000 001 010 011 100 101 110 111
- subsets @ {az} {ax} {ap.as} {a}) {4y, a3} {ay. a4} {ay, ay. as)
T
. iy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson
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Generating SuUlsets: () ’P

n Subsets (Binary reflected Gray code)
1 0 1

2 00 01 11 10

3 000 001 011 010 110 111 101 100

111
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4.4 [Decrease-hby-Constant-Factor Algorithms

rrr

rra

In this variation of: decrease-and-conquer;, Instance size
IS recuced by the same factor (typically, 2)

Examples:
. binary search and the method of bisection

. exponentiation by squaring
- multiphcation a la russe (Russian peasant method)
. fake-coin puzzie

. Josephus problem

111
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Binary Search
rrs

\/ery efficient algorithm for searching in sorted array: S
K
VS
A[0] . . . Alm] . . . A[n-1]

I K= A]m], stop (suiccesstul search); otherwise, continue
searching by the same method in A[0.m-1] Itk < Alm]
and in Alm+1.n-1] it K> Alm]
< 0; r<n-1
while I'< r do

m <« [(I+r)/2]

Iif K= Alm] return m

else IFKK< Alm] r< m-1

else '« m+1

<: return -1
:‘ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17



Binary Search: Example

As an example, let us apply binary search to searching for K = 70 in the array

14 (273139425570 (74 (81 | 85|93 |98

The iterations of the algorithm are given in the following table:

index 1 2 3 4 5 6 7 8 9 10 11 12
value 141271313942 55|70 74|81 |85]93

iteration 1 m
iteration 2

iteration 3
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Analysis ofi Binary Search
rrs

Time efficiency S
Worst-case recurrence: G, (]n) —1+C, (Ln/2]), C, (1)=1
solution: G, (n) = [[og,(n+1)

Thisis VERY fast: e.g., C,(10°) = 20
Optimal for searching a sorted array (hashing even: Detter)
LLimitations: must be a sorted array (not linked liSt)

Has a continuous counterpart called bisection method for
solving equations in one unknown (%) = 0/(see Sec. 12.4)

111
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EXponentiation by Squaring '

rrau
The problem: Compuite a% Where n Is a nonnegative Integer

T'he problem can be solved by applying recursively the formulas:

For even values ofin
a= (@) ifn>0 and a%=1
For oddvalues ofin
an=(aD2)2g
Recurrence: M(n) = M(Ln/21) + f(n), where f(n) = 1 or 2,

M(0) = 0
-
ﬁ= Master Theorem: M(n) € ©(log n) = ©(b) where b = [log,(n+1)/
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Russian Peasant Multiplication
rrs

rrau
Tihe problem: Compuite the product ofi two: posItiVve INtEgers

Can be solved by a decrease-by-halfalgorithm based on the
following formulas.

For even values of n:

n*m:%*Zm

For odd values of n:

n>m = ngl *2m + m ifn>1 and m it n=1

111
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Example off Russian Peasant Multiplication

rrr

rrau

Compute 20 = 26

[ [T

200 26

10° 52

o 104 104

2 206 +

1 416° 416
920

Note: Method reduces to adding m’s values corresponding to

odd n’s.
=
b -
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson
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Fake-Coin Puzzle (Simpler Version) '

rrau
There are n identically looking coins one of: whichiis fake.

[here Is a balance scale but there are noWeights; the scale can
tell'whether tworsets of coins Weigh the same and, If'not, which
ofithe two Sets IS heavier: (but not by how much). Design an
efficient algorithm for detecting the fake coin. Assume that
the fake coinis known to be lighter than the genuine ones.

[Decrease by factor 2 algorithm

[Decrease by factor s algorithm

111
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4.5 \ariable-Size-Decrease Algorithms '

rrau

In the variable-size-decrease variation of decrease-and-
CONQUEr, Instance Size reduction Varies from one
iteration to another

Examples:

Euclid’s algorithm for greatest common divisor
. partition-based algorithm for selection problem
. INnterpolation search
. Some algorithms on binary search trees
.« Nim and Nim-like games

111
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Euclid’s Alsorithm
5 I

rra
Euclid’s algorithm is based on repeated application of equality

gcd(m, n) = gcd(n, m mod n)
EX.: gcd(80,44) = ged(44,36) = ged(386; 12) = ged(12,0) = 12

©One can proyve that the size, measured by the second NUMIEE,
decreases at least by half after two consecutive Iterations.
Hence, T(n) € O(log n)

111
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Selection Problem
'y

Find the k-th smallest element in a list of n numlbers
k=1ork=n

median: k= n/2|
Examples 4, 1, 10, 9, 7, 12, 8, 2, 15 median= ?

Tthe median Is Used In statistics as a measure of an average
valtie of:a sample. In fact, It 1s a better (more robust) indicator
than the mean, Which is used for: the same pPUrpose.

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26



Algorithms for the Selection Problem
: I

['he sorting-based algorithm: Sort and return the K-th element
Efficiency (ifisorted by mergesort): ®(nlog n)

A faster algorithm is based on the array partitioning:

S
all are <A[s] all are > A[s]

Assuming that the array is indexed from 0 to n-1 and s Is a split
position obtained by the array partitioning:

Ifis = k-1, the problem is solved;

Ifis > K-1, look for: the k-th smallest element in the left part;
If's < k-1 look for: the (k-s)-th smallest element in the right part.
<= Note: The algorithm can simply continue until's = k-1.

ﬂ‘ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson
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Two Partitioning Algorithms

rrr

rrau

[here are two principal Ways to partition an array:
One-directional scan (ILomuto’s partitioning algorithm)

Two-directional scan (Hoare’s partitioning algorithm)

111
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Lomuto’s Partitioning Algorithm
I11,

Scans the array left to right maintaining the array’s partition
INto thiree contiguous sections: < p, = p, and unknown, Where p
is the value of the first element (the partition’s pivot).

On each Iteration the unknown Section IS cecreased by one
element until it’s empty and a partition is achieved by
exchanging the pivot with the element in the split position:s.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson
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LLomuto’s Partitioning Algorithm

I'r!

ALGORITHM LomutoPartition(All..r)])

//[Partitions subarray by Lomuto’s algorithm using first element as pivot
//Input: A subarray A[l..r] of array A[0..n — 1], defined by its left and right
// indices/ andr (I <r)
//Output: Partition of A[l..r] and the new position of the pivot
p < A[l]
5 «— 1/
fori <[+ 1tordo

if Ali]<p

s < s+ 1: swap(Als], Ali])

swap(A[/], Als])
return s

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson
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Tracing Lomuto’s Partioning Algorithm

S | i
4 | 1 |10 8 [ 7 (12| 9 | 2 | 15
S i
4 11|10 8 [ 7 12| 9 | 2 | 15
S i
4 11|10 8 (7 12| 9 | 2 | 15
S i
4 |1 |2 (8 |7 (12| 9 | 10 | 15
S
4 11| 2 |8 |7 12| 9 |10 | 15
2 | 1| 4|18 |7 129 (10| 15
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Tracing Lomuto’s Partioning Algorithm

s | i

4 (12 (10 8 [ 7 | 1 | 9 | 2 | 15

S i

4 1 [10( 8 [ 7 [12| 9 | 2 | 15
S i

4 | 1 |10| 8 | 7 (12| 9 | 2 | 15
S i

4 1|2 (8 |7 [12| 9 | 10 | 15

S i
4 1|2 (8 |7 [12| 9 | 10 | 15
2 | 1| 4|18 )| 7 12| 9 |10 | 15
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Quickselect (Partition-based Algorithm '

ALGORITHM  Quickselect(A[l..r], k)

il

/ISolves the selection problem by recursive partition-based algorithm
//Input: Subarray A[l..r| of array A[0..n — 1] of orderable elements and
/f integerk (1 <k<r—141)

//Output: The value of the kth smallest element in A[/..r]|

s < LomutoPartition(All..r|) //or another partition algorithm
if s =k — | return A[s]

elseif s = I + k — 1 Quickselect(All..s — 1], k)

else Quickselect(Als + l.r], k — 1 —s)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson
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T'racing Quickselect (Partition-based Algorithm)

Yy v u
Eind the medianof: 4,1, 10; 9, 7, 12, &, 2, 15
Here:n=9 k=[9/2]|=5, k -1=4
0|1]2]|3 5 8
1110( 8|7 |12 15
after 1st partitioning: s=2<k-1=4 |2 | 1|4 |8 | 71121 9 1015
8|7 |12|9 |10|15
after 2nd partitioning: s=4=k-1 718 (1219110115

The median is A[4]= 8

111
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Efficiency of @Quickselect
rrs

Average case (average split in the middie):
C(n) = C(n/2)+(n+1) C(n) € B(n)

\Worst case (degenerate split): C(n) € ©®(n?)

A more sophisticated choice ofithe pivot leads to a complicated
algorithm with ®@(n) Worst-case efficiency.

111
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Interpolation Search (1)

I'rs
Searches a sorted array similar to binary search but estimates S
location ofithe search key in Afl..r] by using its value v. Specifically,
the values of the array’s elements are assumed to grow linearly from
All] to Alr] and the location ofiv IS estimated as the x-coordinate of
the point on the straight line through (I; All]) and (r, A[r]) whose V-
coordinate s V:

4 \‘(u — A[l)(r — I_}J

A[r]— All]

| g
iid
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Interpolation Search (2) ’rt

After comparing v with A[x], the algorithm either stops (if they. are |
equal) or proceeds by searching inthe same manner among the
elements indexed either between |'and x — 1 or between x + 1 and r,
depending oniwhether Alx] 1sssmaller or larger than . TThus, the size

of the problem’s instance is reduced, but we cannot tell a priori by
now much

4 \‘(u — A[I]){_r — I_}J

A[r]— All]

| g
iid
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Analysis oft Interpolation Search
rrs

rrau

Efficiency.
average case: C(n)<log, log, n + 1
worst case: C(n) =n

Preferable to binary search only for VERY large arrays
and/or expensive comparisons

Has a counterpart, the method of false position (requla failst),
for: solving equations in one unknown (Sec. 12.4)
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Binary Search Tiree Algorithms
1.
Several algorithms on BSH reqUIFES FECUKSIVE Processing of:
just one of: 1ts subtrees, e.g.,

Searching

Insertion ofia new key

Finding the smallest (or the largest) key.

AA
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Searching in Binary Search iree
rrs

rrau

Algorithm BTS(x, V)
//Searches for node with key equal to v in BST rooted at node X
Ix = NIL return -1
else ifi v.= K(x) return x
else It v < K(x) return BTS(left(x), V)
else return BTS(right(x), V)

Efficiency,

worst case:  C(n)=n
average case: C(n)=2Inn~=1.3910g, n

111
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One-Pile Nim
'yl

rrau
There i1s a pile ofin chips. Two players take turn by removing

from the pile at least 1 and at most m chips. (‘'he number: of
chips taken can vary fromimoyve to move.) The Winner Is the
player: that takes the last chip. Whowins the game — the player
mowving first or second, iffboth player make the best moves
PossIble?

It’s a good idea to analyze this and similar games “backwards”,
1.e., startingwith n =0, 1, 2, ...

111
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RPartial Graph off ©One-Pile Nim with m :';L’

\/ertex NUMBEKS Indicate n, the numiber: ofichips in the pile. The

losing position for: the player to moyve are circled. Only winning
MOVeES from a Winning position are snown (in bold).

Generalization: The player moving first wins iffinis not a
multiple of 5 (more generally, m+1); the

winning moyve Is to take n mod 5 (n mod (m+1))

ChIPS 0N eVery move.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 42

111



	Slide 1: Chapter 4: Decrease-and-Conquer
	Slide 2: 3 Types of Decrease and Conquer
	Slide 3: What’s the difference?
	Slide 4: 4.1 Insertion Sort
	Slide 5: Pseudocode of Insertion Sort 
	Slide 6: Analysis of Insertion Sort
	Slide 7: 4.2 Dags and Topological Sorting
	Slide 8: Topological Sorting Example
	Slide 9: DFS-based Algorithm
	Slide 10: Source Removal Algorithm
	Slide 11: 4.3 Generating Permutations 
	Slide 12: Other permutation generating algorithms
	Slide 13: Generating Subsets: (1)
	Slide 14: Generating Subsets: (2)
	Slide 15: Generating Subsets: (3)
	Slide 16: 4.4 Decrease-by-Constant-Factor Algorithms
	Slide 17: Binary Search
	Slide 18: Binary Search: Example
	Slide 19: Analysis of Binary Search
	Slide 20: Exponentiation by Squaring
	Slide 21: Russian Peasant Multiplication
	Slide 22: Example of Russian Peasant Multiplication
	Slide 23: Fake-Coin Puzzle (simpler version)
	Slide 24: 4.5 Variable-Size-Decrease Algorithms
	Slide 25: Euclid’s Algorithm
	Slide 26: Selection Problem
	Slide 27: Algorithms for the Selection Problem
	Slide 28: Two Partitioning Algorithms
	Slide 29: Lomuto’s Partitioning Algorithm
	Slide 30: Lomuto’s Partitioning Algorithm
	Slide 31: Tracing Lomuto’s Partioning Algorithm
	Slide 32: Tracing Lomuto’s Partioning Algorithm
	Slide 33: Quickselect (Partition-based Algorithm
	Slide 34: Tracing Quickselect (Partition-based Algorithm)
	Slide 35: Efficiency of Quickselect
	Slide 36: Interpolation Search (1)
	Slide 37: Interpolation Search (2)
	Slide 38: Analysis of Interpolation Search
	Slide 39: Binary Search Tree Algorithms
	Slide 40: Searching in Binary Search Tree
	Slide 41: One-Pile Nim
	Slide 42: Partial Graph of One-Pile Nim with m = 4 

