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Chapter 4: Decrease-and-Conquer

1. Reduce problem instance to smaller instance of 

the same problem

2. Solve smaller instance

3. Extend solution of smaller instance to obtain 

solution to original instance

Can be implemented either top-down approach (with 

recursive solution), or

bottom-up, approach, also referred to as inductive or 

incremental approach
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3 Types of Decrease and Conquer

Decrease by a constant (usually by 1):

• insertion sort

• topological sorting

• algorithms for generating permutations, subsets 

Decrease by a constant factor (usually by half)

• binary search and bisection method

• exponentiation by squaring

• multiplication à la russe

Variable-size decrease

• Euclid’s algorithm -- gcd(m, n) = gcd(n, m mod n).

• selection by partition

• Nim-like games
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What’s the difference?

Consider the problem of exponentiation: Compute  an

Decrease by one:

Decrease by constant factor:
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4.1 Insertion Sort

To sort array A[0..n-1], sort A[0..n-2] recursively and

then insert A[n-1] in its proper place among the sorted

 A[0..n-2]
 

Usually implemented bottom up (nonrecursively)

Example:   Sort  6,  4,  1,  8,  5

 6 | 4   1   8   5

  4   6 | 1   8   5

  1   4   6 | 8   5

  1   4   6   8 | 5

  1   4   5   6   8
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Pseudocode of Insertion Sort 
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Analysis of Insertion Sort

Time efficiency

 Cworst(n) = n(n-1)/2  Θ(n2)

 Cavg(n) ≈ n2/4  Θ(n2)

 Cbest(n) = n - 1  Θ(n)  (also fast on almost sorted arrays)

Space efficiency: in-place

Stability: yes

Best elementary sorting algorithm overall

Binary insertion sort
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4.2 Dags and Topological Sorting

A dag: a directed acyclic graph, i.e. a directed graph with no 
(directed) cycles

Arise in modeling many problems that involve prerequisite

constraints (construction projects, document version control)

Vertices of a dag can be linearly ordered so that for every edge
its starting vertex is listed before its ending vertex (topological   
sorting).  Being a dag is also a necessary condition for 
topological sorting be possible. 

a b

c d

a b

c d

a dag not a dag
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Topological Sorting Example

Order the following items in a food chain

fish

human

shrimp

sheep

wheatplankton

tiger
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DFS-based Algorithm

DFS-based algorithm for topological sorting

• Perform DFS traversal, noting the order vertices are 
popped off the traversal stack

• Reverse order solves topological sorting problem

• Back edges encountered?→ NOT a dag!

Example:

Efficiency: 

a b

e f

c d

g h
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Source Removal Algorithm

Source removal algorithm

 Repeatedly identify and remove a source (a vertex with no 
incoming edges) and all the edges incident to it until either 
no vertex is left (problem is solved) or there is no source 
among remaining vertices (not a dag)

Example:

Efficiency: same as efficiency of the DFS-based algorithm

a b

e f

c d

g h
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4.3 Generating Permutations 

Minimal-change decrease-by-one algorithm

If n = 1 return 1; otherwise, generate recursively the list of all 
permutations of 12…n-1 and then insert n into each of 
those permutations by starting with inserting n into 12...n-1 
by moving right to left and then switching direction for 
each new permutation

Example: n=3

start     1 

insert 2 into 1 right to left 12 21

insert 3 into 12 right to left  123 132 312

insert 3 into 21 left to right 321 231 213
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Other permutation generating algorithms

Johnson-Trotter (p. 145)

Lexicographic-order algorithm (p. 146)

Heap’s algorithm (Problem 4 in Exercises 4.3)
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Generating Subsets: (1)
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Generating Subsets: (2)

Binary reflected Gray code: minimal-change algorithm for 

generating 2n bit strings corresponding to all the subsets of 

an n-element set where n > 0

If n=1 make list L of two bit strings 0 and 1

else

 generate recursively list L1 of bit strings of length n-1

 copy list L1 in reverse order to get list L2 

 add 0 in front of each bit string in list L1

 add 1 in front of each bit string in list L2

 append L2 to L1 to get L

return L
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Generating Subsets: (3)

n                       Subsets (Binary reflected Gray code)

1        0         1

2      00       01       11     10

3     000     001     011   010       110     111     101   100

4



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

4.4 Decrease-by-Constant-Factor Algorithms

In this variation of decrease-and-conquer, instance size 
is reduced by the same factor (typically, 2) 

Examples:

•  binary search and the method of bisection

•  exponentiation by squaring

•  multiplication à la russe (Russian peasant method)

•  fake-coin puzzle

•  Josephus problem
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Binary Search

Very efficient algorithm for searching in sorted array:

                                              K

              vs

   A[0]  .  .  .  A[m]  .  .  .  A[n-1]

If K = A[m], stop (successful search);  otherwise, continue

searching by the same method in A[0..m-1] if K < A[m]

and in A[m+1..n-1] if K > A[m]

l  0;   r  n-1

while l  r do

 m   (l+r)/2

     if  K = A[m]  return m

     else if K < A[m]  r  m-1

     else l  m+1

return -1
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Binary Search: Example
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Analysis of Binary Search

Time efficiency

• worst-case recurrence:  Cw (n) = 1 + Cw( n/2 ),  Cw (1) = 1 
solution: Cw(n) = log2(n+1) 

This is VERY fast: e.g., Cw(106) = 20

Optimal for searching a sorted array (hashing even better)

Limitations: must be a sorted array (not linked list)

Has a continuous counterpart called bisection method for 
solving equations in one unknown f(x) = 0 (see Sec. 12.4)
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Exponentiation by Squaring

The problem: Compute an where n is a nonnegative integer

The problem can be solved by applying recursively the formulas:

For even values of n

For odd values of n

a n = (a n/2 )2   if n > 0  and  a 0 = 1

a n = (a (n-1)/2 )2 a

Recurrence:  M(n) = M( n/2 ) + f(n),  where f(n) = 1 or 2, 

                       M(0) = 0

Master Theorem: M(n)  Θ(log n) = Θ(b) where b = log2(n+1)
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Russian Peasant Multiplication

The problem: Compute the product of two positive integers

Can be solved by a decrease-by-half algorithm based on the 

following formulas.

For even values of n:

For odd values of n:

n * m  =         *  2m

n * m  =             *  2m  +  m   if  n > 1   and   m  if  n = 1                   

n 

2

n – 1 

   2
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Example of Russian Peasant Multiplication

Compute  20 * 26

            n      m

                  20     26

                  10     52

                    5    104    104

                    2    208   +

                    1    416    416

                         520

Note: Method reduces to adding m’s values corresponding to

            odd  n’s.
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Fake-Coin Puzzle (simpler version)

There are n identically looking coins one of which is fake. 

There is a balance scale but there are no weights; the scale can 

tell whether two sets of coins weigh the same and, if not, which 

of the two sets is heavier (but not by how much).  Design an 

efficient algorithm for detecting the fake coin.  Assume that 

the fake coin is known to be lighter than the genuine ones.

Decrease by factor 2 algorithm

Decrease by factor 3 algorithm 
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4.5 Variable-Size-Decrease Algorithms

In the variable-size-decrease variation of decrease-and-

conquer, instance size reduction varies from one 

iteration to another       

Examples:

•  Euclid’s algorithm  for greatest common divisor

•  partition-based algorithm for selection problem

•  interpolation search

•  some algorithms on binary search trees

•  Nim and Nim-like games
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Euclid’s algorithm is based on repeated application of equality

gcd(m, n) = gcd(n, m mod n)

Ex.: gcd(80,44) = gcd(44,36) = gcd(36, 12) = gcd(12,0) = 12

One can prove that the size, measured by the second number,

decreases at least by half after two consecutive iterations. 

Hence, T(n)  O(log n)

Euclid’s Algorithm
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Selection Problem

Find the k-th smallest element in a list of n numbers

k = 1 or k = n

median: k = n/2

    Example: 4,  1,  10,  9,  7,  12,  8,  2,  15   median = ?

The median is used in statistics as a measure of an average

value of a sample.  In fact, it is a better (more robust) indicator

than the mean, which is used for the same purpose.
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Algorithms for the Selection Problem

The sorting-based algorithm: Sort and return the k-th element
Efficiency (if sorted by mergesort): Θ(nlog n)

A faster algorithm is based on the array partitioning: 

Assuming that the array is indexed from 0 to n-1 and s is a split 
position obtained by the array partitioning:

If s = k-1, the problem is solved;

if s > k-1, look for the k-th smallest element in the left part;
if s < k-1, look for the (k-s)-th smallest element in the right part.

Note: The algorithm can simply continue until s = k-1.

s

all are ≤ A[s] all are ≥ A[s]
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Two Partitioning Algorithms

There are two principal ways to partition an array:

One-directional scan (Lomuto’s partitioning algorithm)

Two-directional scan (Hoare’s partitioning algorithm)
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Lomuto’s Partitioning Algorithm

Scans the array left to right maintaining the array’s partition 

into three contiguous sections: < p,   p, and unknown, where p 

is the value of the first element (the partition’s pivot). 

On each iteration the unknown section is decreased by one 

element until it’s empty and a partition is achieved by 

exchanging the pivot with the element in the split position s. 

p < p >= p ?

l s i r

p < p >= p

l s r



Lomuto’s Partitioning Algorithm
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Tracing Lomuto’s Partioning Algorithm

s i

4 1 10 8 7 12 9 2 15

s i

4 1 10 8 7 12 9 2 15

s i

4 1 10 8 7 12 9 2 15

s i

4 1 2 8 7 12 9 10 15

s

4 1 2 8 7 12 9 10 15

2 1 4 8 7 12 9 10 15
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Tracing Lomuto’s Partioning Algorithm

s i

4 12 10 8 7 1 9 2 15

s i

4 1 10 8 7 12 9 2 15

s i

4 1 10 8 7 12 9 2 15

s i

4 1 2 8 7 12 9 10 15

s i

4 1 2 8 7 12 9 10 15

2 1 4 8 7 12 9 10 15



Quickselect (Partition-based Algorithm
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Tracing Quickselect (Partition-based Algorithm)

Find the median of   4,  1,  10,  9,  7,  12,  8,  2,  15

Here: n = 9, k = 9/2 = 5, k -1=4

  

                       

0 1 2 3 4 5 6 7 8

4 1 10 8 7 12 9 2 15

2 1 4 8 7 12 9 10 15

8 7 12 9 10 15

7 8 12 9 10 15

after 1st partitioning: s=2<k-1=4

after 2nd partitioning: s=4=k-1

The median is A[4]= 8
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Efficiency of Quickselect

Average case (average split in the middle): 

  C(n) = C(n/2)+(n+1)                 C(n)  Θ(n)

Worst case (degenerate split):   C(n)  Θ(n2)

A more sophisticated choice of the pivot leads to a complicated 

algorithm with Θ(n) worst-case efficiency.



Searches a sorted array similar to binary search but estimates 
location of the search key in A[l..r] by using its value v. Specifically, 
the values of the array’s elements are assumed to grow linearly from 
A[l] to A[r] and the location of v is estimated as the x-coordinate of 
the point on the straight line through (l, A[l]) and (r, A[r]) whose y-
coordinate is v:

36

index

value

A[r]

v

A[l]

l x r

.

.

Interpolation Search (1)



After comparing v with A[x], the algorithm either stops (if they are 
equal) or proceeds by searching in the same manner among the 
elements indexed either between l and x − 1 or between x + 1 and r, 
depending on whether A[x] is smaller or larger than v. Thus, the size 
of the problem’s instance is reduced, but we cannot tell a priori by 
how much

37

index

value

A[r]

v

A[l]

l x r

.

.

Interpolation Search (2)
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Analysis of Interpolation Search

Efficiency

 average case: C(n) < log2 log2 n + 1

     worst case: C(n) = n

Preferable to binary search only for VERY large arrays 

and/or expensive comparisons

Has a counterpart, the method of false position (regula falsi), 

for solving equations in one unknown (Sec. 12.4)
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Binary Search Tree Algorithms

Several algorithms on BST requires recursive processing of 

just one of its subtrees, e.g.,

  Searching

  Insertion of a new key

  Finding the smallest (or the largest) key

k

<k >k
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Searching in Binary Search Tree

Algorithm BTS(x, v)

//Searches for node with key equal to v in BST rooted at node x

      if x = NIL  return -1

      else if  v = K(x)  return x

      else if  v < K(x)  return BTS(left(x), v)

      else return BTS(right(x), v)

Efficiency

     worst case:    C(n) = n

 average case: C(n) ≈ 2ln n ≈ 1.39log2 n
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One-Pile Nim

There is a pile of n chips.  Two players take turn by removing 

from the pile at least 1 and at most m chips.  (The number of 

chips taken can vary from move to move.)  The winner is the 

player that takes the last chip.  Who wins the game – the player 

moving first or second, if both player make the best moves 

possible? 

It’s a good idea to analyze this and similar games “backwards”, 

i.e., starting with n = 0, 1, 2, … 
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Partial Graph of One-Pile Nim with m = 4 

0 5

1

2

3

4

10

6

7

8

9

Vertex numbers indicate n, the number of chips in the pile.  The 

losing position for the player to move are circled.  Only winning 

moves from a winning position are shown (in bold).

Generalization: The player moving first wins iff n is not a 

                            multiple of 5 (more generally, m+1); the

                            winning move is to take  n mod 5 (n mod (m+1))

                            chips on every move.
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