
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Chapter 4: Decrease-and-Conquer

1. Reduce problem instance to smaller instance of

the same problem

2. Solve smaller instance

3. Extend solution of smaller instance to obtain

solution to original instance

Can be implemented either top-down approach (with

recursive solution), or

bottom-up, approach, also referred to as inductive or

incremental approach

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

3 Types of Decrease and Conquer

Decrease by a constant (usually by 1):

• insertion sort

• topological sorting

• algorithms for generating permutations, subsets

Decrease by a constant factor (usually by half)

• binary search and bisection method

• exponentiation by squaring

• multiplication à la russe

Variable-size decrease

• Euclid’s algorithm -- gcd(m, n) = gcd(n, m mod n).

• selection by partition

• Nim-like games

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

What’s the difference?

Consider the problem of exponentiation: Compute an

Decrease by one:

Decrease by constant factor:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

4.1 Insertion Sort

To sort array A[0..n-1], sort A[0..n-2] recursively and

then insert A[n-1] in its proper place among the sorted

 A[0..n-2]

Usually implemented bottom up (nonrecursively)

Example: Sort 6, 4, 1, 8, 5

 6 | 4 1 8 5

 4 6 | 1 8 5

 1 4 6 | 8 5

 1 4 6 8 | 5

 1 4 5 6 8

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Pseudocode of Insertion Sort

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

Analysis of Insertion Sort

Time efficiency

 Cworst(n) = n(n-1)/2  Θ(n2)

 Cavg(n) ≈ n2/4  Θ(n2)

 Cbest(n) = n - 1  Θ(n) (also fast on almost sorted arrays)

Space efficiency: in-place

Stability: yes

Best elementary sorting algorithm overall

Binary insertion sort

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

4.2 Dags and Topological Sorting

A dag: a directed acyclic graph, i.e. a directed graph with no
(directed) cycles

Arise in modeling many problems that involve prerequisite

constraints (construction projects, document version control)

Vertices of a dag can be linearly ordered so that for every edge
its starting vertex is listed before its ending vertex (topological
sorting). Being a dag is also a necessary condition for
topological sorting be possible.

a b

c d

a b

c d

a dag not a dag

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Topological Sorting Example

Order the following items in a food chain

fish

human

shrimp

sheep

wheatplankton

tiger

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

DFS-based Algorithm

DFS-based algorithm for topological sorting

• Perform DFS traversal, noting the order vertices are
popped off the traversal stack

• Reverse order solves topological sorting problem

• Back edges encountered?→ NOT a dag!

Example:

Efficiency:

a b

e f

c d

g h

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Source Removal Algorithm

Source removal algorithm

 Repeatedly identify and remove a source (a vertex with no
incoming edges) and all the edges incident to it until either
no vertex is left (problem is solved) or there is no source
among remaining vertices (not a dag)

Example:

Efficiency: same as efficiency of the DFS-based algorithm

a b

e f

c d

g h

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

4.3 Generating Permutations

Minimal-change decrease-by-one algorithm

If n = 1 return 1; otherwise, generate recursively the list of all
permutations of 12…n-1 and then insert n into each of
those permutations by starting with inserting n into 12...n-1
by moving right to left and then switching direction for
each new permutation

Example: n=3

start 1

insert 2 into 1 right to left 12 21

insert 3 into 12 right to left 123 132 312

insert 3 into 21 left to right 321 231 213

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Other permutation generating algorithms

Johnson-Trotter (p. 145)

Lexicographic-order algorithm (p. 146)

Heap’s algorithm (Problem 4 in Exercises 4.3)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Generating Subsets: (1)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Generating Subsets: (2)

Binary reflected Gray code: minimal-change algorithm for

generating 2n bit strings corresponding to all the subsets of

an n-element set where n > 0

If n=1 make list L of two bit strings 0 and 1

else

 generate recursively list L1 of bit strings of length n-1

 copy list L1 in reverse order to get list L2

 add 0 in front of each bit string in list L1

 add 1 in front of each bit string in list L2

 append L2 to L1 to get L

return L

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

Generating Subsets: (3)

n Subsets (Binary reflected Gray code)

1 0 1

2 00 01 11 10

3 000 001 011 010 110 111 101 100

4

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

4.4 Decrease-by-Constant-Factor Algorithms

In this variation of decrease-and-conquer, instance size
is reduced by the same factor (typically, 2)

Examples:

• binary search and the method of bisection

• exponentiation by squaring

• multiplication à la russe (Russian peasant method)

• fake-coin puzzle

• Josephus problem

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

Binary Search

Very efficient algorithm for searching in sorted array:

 K

 vs

 A[0] . . . A[m] . . . A[n-1]

If K = A[m], stop (successful search); otherwise, continue

searching by the same method in A[0..m-1] if K < A[m]

and in A[m+1..n-1] if K > A[m]

l  0; r  n-1

while l  r do

 m  (l+r)/2

 if K = A[m] return m

 else if K < A[m] r  m-1

 else l  m+1

return -1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

Binary Search: Example

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Analysis of Binary Search

Time efficiency

• worst-case recurrence: Cw (n) = 1 + Cw(n/2), Cw (1) = 1
solution: Cw(n) = log2(n+1)

This is VERY fast: e.g., Cw(106) = 20

Optimal for searching a sorted array (hashing even better)

Limitations: must be a sorted array (not linked list)

Has a continuous counterpart called bisection method for
solving equations in one unknown f(x) = 0 (see Sec. 12.4)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Exponentiation by Squaring

The problem: Compute an where n is a nonnegative integer

The problem can be solved by applying recursively the formulas:

For even values of n

For odd values of n

a n = (a n/2)2 if n > 0 and a 0 = 1

a n = (a (n-1)/2)2 a

Recurrence: M(n) = M(n/2) + f(n), where f(n) = 1 or 2,

 M(0) = 0

Master Theorem: M(n)  Θ(log n) = Θ(b) where b = log2(n+1)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Russian Peasant Multiplication

The problem: Compute the product of two positive integers

Can be solved by a decrease-by-half algorithm based on the

following formulas.

For even values of n:

For odd values of n:

n * m = * 2m

n * m = * 2m + m if n > 1 and m if n = 1

n

2

n – 1

 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Example of Russian Peasant Multiplication

Compute 20 * 26

 n m

 20 26

 10 52

 5 104 104

 2 208 +

 1 416 416

 520

Note: Method reduces to adding m’s values corresponding to

 odd n’s.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Fake-Coin Puzzle (simpler version)

There are n identically looking coins one of which is fake.

There is a balance scale but there are no weights; the scale can

tell whether two sets of coins weigh the same and, if not, which

of the two sets is heavier (but not by how much). Design an

efficient algorithm for detecting the fake coin. Assume that

the fake coin is known to be lighter than the genuine ones.

Decrease by factor 2 algorithm

Decrease by factor 3 algorithm

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

4.5 Variable-Size-Decrease Algorithms

In the variable-size-decrease variation of decrease-and-

conquer, instance size reduction varies from one

iteration to another

Examples:

• Euclid’s algorithm for greatest common divisor

• partition-based algorithm for selection problem

• interpolation search

• some algorithms on binary search trees

• Nim and Nim-like games

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

Euclid’s algorithm is based on repeated application of equality

gcd(m, n) = gcd(n, m mod n)

Ex.: gcd(80,44) = gcd(44,36) = gcd(36, 12) = gcd(12,0) = 12

One can prove that the size, measured by the second number,

decreases at least by half after two consecutive iterations.

Hence, T(n)  O(log n)

Euclid’s Algorithm

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

Selection Problem

Find the k-th smallest element in a list of n numbers

k = 1 or k = n

median: k = n/2

 Example: 4, 1, 10, 9, 7, 12, 8, 2, 15 median = ?

The median is used in statistics as a measure of an average

value of a sample. In fact, it is a better (more robust) indicator

than the mean, which is used for the same purpose.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

Algorithms for the Selection Problem

The sorting-based algorithm: Sort and return the k-th element
Efficiency (if sorted by mergesort): Θ(nlog n)

A faster algorithm is based on the array partitioning:

Assuming that the array is indexed from 0 to n-1 and s is a split
position obtained by the array partitioning:

If s = k-1, the problem is solved;

if s > k-1, look for the k-th smallest element in the left part;
if s < k-1, look for the (k-s)-th smallest element in the right part.

Note: The algorithm can simply continue until s = k-1.

s

all are ≤ A[s] all are ≥ A[s]

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

Two Partitioning Algorithms

There are two principal ways to partition an array:

One-directional scan (Lomuto’s partitioning algorithm)

Two-directional scan (Hoare’s partitioning algorithm)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

Lomuto’s Partitioning Algorithm

Scans the array left to right maintaining the array’s partition

into three contiguous sections: < p,  p, and unknown, where p

is the value of the first element (the partition’s pivot).

On each iteration the unknown section is decreased by one

element until it’s empty and a partition is achieved by

exchanging the pivot with the element in the split position s.

p < p >= p ?

l s i r

p < p >= p

l s r

Lomuto’s Partitioning Algorithm

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 30

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 31

Tracing Lomuto’s Partioning Algorithm

s i

4 1 10 8 7 12 9 2 15

s i

4 1 10 8 7 12 9 2 15

s i

4 1 10 8 7 12 9 2 15

s i

4 1 2 8 7 12 9 10 15

s

4 1 2 8 7 12 9 10 15

2 1 4 8 7 12 9 10 15

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 32

Tracing Lomuto’s Partioning Algorithm

s i

4 12 10 8 7 1 9 2 15

s i

4 1 10 8 7 12 9 2 15

s i

4 1 10 8 7 12 9 2 15

s i

4 1 2 8 7 12 9 10 15

s i

4 1 2 8 7 12 9 10 15

2 1 4 8 7 12 9 10 15

Quickselect (Partition-based Algorithm

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 33

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 34

Tracing Quickselect (Partition-based Algorithm)

Find the median of 4, 1, 10, 9, 7, 12, 8, 2, 15

Here: n = 9, k = 9/2 = 5, k -1=4

0 1 2 3 4 5 6 7 8

4 1 10 8 7 12 9 2 15

2 1 4 8 7 12 9 10 15

8 7 12 9 10 15

7 8 12 9 10 15

after 1st partitioning: s=2<k-1=4

after 2nd partitioning: s=4=k-1

The median is A[4]= 8

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 35

Efficiency of Quickselect

Average case (average split in the middle):

 C(n) = C(n/2)+(n+1) C(n)  Θ(n)

Worst case (degenerate split): C(n)  Θ(n2)

A more sophisticated choice of the pivot leads to a complicated

algorithm with Θ(n) worst-case efficiency.

Searches a sorted array similar to binary search but estimates
location of the search key in A[l..r] by using its value v. Specifically,
the values of the array’s elements are assumed to grow linearly from
A[l] to A[r] and the location of v is estimated as the x-coordinate of
the point on the straight line through (l, A[l]) and (r, A[r]) whose y-
coordinate is v:

36

index

value

A[r]

v

A[l]

l x r

.

.

Interpolation Search (1)

After comparing v with A[x], the algorithm either stops (if they are
equal) or proceeds by searching in the same manner among the
elements indexed either between l and x − 1 or between x + 1 and r,
depending on whether A[x] is smaller or larger than v. Thus, the size
of the problem’s instance is reduced, but we cannot tell a priori by
how much

37

index

value

A[r]

v

A[l]

l x r

.

.

Interpolation Search (2)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 38

Analysis of Interpolation Search

Efficiency

 average case: C(n) < log2 log2 n + 1

 worst case: C(n) = n

Preferable to binary search only for VERY large arrays

and/or expensive comparisons

Has a counterpart, the method of false position (regula falsi),

for solving equations in one unknown (Sec. 12.4)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 39

Binary Search Tree Algorithms

Several algorithms on BST requires recursive processing of

just one of its subtrees, e.g.,

 Searching

 Insertion of a new key

 Finding the smallest (or the largest) key

k

<k >k

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 40

Searching in Binary Search Tree

Algorithm BTS(x, v)

//Searches for node with key equal to v in BST rooted at node x

 if x = NIL return -1

 else if v = K(x) return x

 else if v < K(x) return BTS(left(x), v)

 else return BTS(right(x), v)

Efficiency

 worst case: C(n) = n

 average case: C(n) ≈ 2ln n ≈ 1.39log2 n

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 41

One-Pile Nim

There is a pile of n chips. Two players take turn by removing

from the pile at least 1 and at most m chips. (The number of

chips taken can vary from move to move.) The winner is the

player that takes the last chip. Who wins the game – the player

moving first or second, if both player make the best moves

possible?

It’s a good idea to analyze this and similar games “backwards”,

i.e., starting with n = 0, 1, 2, …

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 4 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 42

Partial Graph of One-Pile Nim with m = 4

0 5

1

2

3

4

10

6

7

8

9

Vertex numbers indicate n, the number of chips in the pile. The

losing position for the player to move are circled. Only winning

moves from a winning position are shown (in bold).

Generalization: The player moving first wins iff n is not a

 multiple of 5 (more generally, m+1); the

 winning move is to take n mod 5 (n mod (m+1))

 chips on every move.

	Slide 1: Chapter 4: Decrease-and-Conquer
	Slide 2: 3 Types of Decrease and Conquer
	Slide 3: What’s the difference?
	Slide 4: 4.1 Insertion Sort
	Slide 5: Pseudocode of Insertion Sort
	Slide 6: Analysis of Insertion Sort
	Slide 7: 4.2 Dags and Topological Sorting
	Slide 8: Topological Sorting Example
	Slide 9: DFS-based Algorithm
	Slide 10: Source Removal Algorithm
	Slide 11: 4.3 Generating Permutations
	Slide 12: Other permutation generating algorithms
	Slide 13: Generating Subsets: (1)
	Slide 14: Generating Subsets: (2)
	Slide 15: Generating Subsets: (3)
	Slide 16: 4.4 Decrease-by-Constant-Factor Algorithms
	Slide 17: Binary Search
	Slide 18: Binary Search: Example
	Slide 19: Analysis of Binary Search
	Slide 20: Exponentiation by Squaring
	Slide 21: Russian Peasant Multiplication
	Slide 22: Example of Russian Peasant Multiplication
	Slide 23: Fake-Coin Puzzle (simpler version)
	Slide 24: 4.5 Variable-Size-Decrease Algorithms
	Slide 25: Euclid’s Algorithm
	Slide 26: Selection Problem
	Slide 27: Algorithms for the Selection Problem
	Slide 28: Two Partitioning Algorithms
	Slide 29: Lomuto’s Partitioning Algorithm
	Slide 30: Lomuto’s Partitioning Algorithm
	Slide 31: Tracing Lomuto’s Partioning Algorithm
	Slide 32: Tracing Lomuto’s Partioning Algorithm
	Slide 33: Quickselect (Partition-based Algorithm
	Slide 34: Tracing Quickselect (Partition-based Algorithm)
	Slide 35: Efficiency of Quickselect
	Slide 36: Interpolation Search (1)
	Slide 37: Interpolation Search (2)
	Slide 38: Analysis of Interpolation Search
	Slide 39: Binary Search Tree Algorithms
	Slide 40: Searching in Binary Search Tree
	Slide 41: One-Pile Nim
	Slide 42: Partial Graph of One-Pile Nim with m = 4

