Chapter s: Brute Force
rrs

rvau
A straightforward approach, usually based directly on the
problem’s statement and definitions of the concepts involved

Examples:
Computing a” (a > 0, n a nonnegative integer)

Computing n!
Multiplying two matrices

Searching for a key ofia given valtie i a list

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

111

5.1 Brute-Force Sorting Algorithm’"

rrau
Selection Sort: Scan the array to find its smallest element and
swap: It with the first element. Tihen, starting with the second
element, scan the elements to the right ofiit to find the
smallest among them and swap it with the second elements.
Generally, on pass i (0= 1< n-2), find the smallest element in
Alr.n-1] and swap it with Ali}:

AO] < . <AL AL Amin]. o Aln-d]

In their final positions

Example: 77 3 2 5

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

111

Analysis of: Selection Sort

ALGORITHM SelectionSort(A[0..n — 1])

/[Sorts a given array by selection sort
/[Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in ascending order

fori <« 0ton—-2do
MIn < i
for j < i+1ton—1do
if Alj] < Almin] min < j
swap Ali| and A[min]

Time efficiency:

Space efficiency:

-
—=Stability: A sorting algorithm is called stable if it preserves the

. relative order of any two equal elements in its input

3.2 Brute-korce String Matching

r'rr
pattern: a string of\m characters to search for: s
text: a (longer) string ofi n characters to search in

problem: find'a substring in the text that matches the pattern

Brute-force algorithm
Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character: of
pattern to the corresponding character in text until
all'characters are found to' match (successtul search); or
a mismatch is detected

Step 3 While pattern is not found and the text IS not Vet
exhausted, realign pattern one position: to the right ana
repeat Step 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

111

Examples oft Brute-Force String I\/Iatchi'n'g’

Text:
Pattern:

Text: 10010101101 001100201121010
Pattern: 01011

1011
01011
e 1011
I ' A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
| 4 Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Pseucdocode andl Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

//Implements brute-force string matching

/Mnput: An array 7 [0..n — 1] of n characters representing a text and
/] an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a

/ matching substring or —1 if the search is unsuccessful
fori < Oton —mdo

Jj<0
while j <m and P[j]=T][i + j]do
J<Jj+1
if j =m return i
return —1

ol Efficiency:

|

I A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
[Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Brute-korce Polynomial Evaltiation

Problem: Find the value of: polynomial
p(X) = ax"+a X" +... +axt+ a,
at a point x = X,

Brute-force algorithm

p< 0.0
for 1< n downto 0 do
power < 1
for j< 1toido //compute X
POWEL <— POWEr * X
P < p + afi] > power

return p
<~‘ Efficiency:
I m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson

[Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rrr

Y

v

| g

11

Rolynomial Evaluation: Improvement

\We can do better by evaluating from right to left:
p(X) = a.x"+ a, X" +... +ax + a,
Better brute-force algorithm

p < a[0]
power < 1
for 1< 1tondo
POWEL <— POWEr * X
P < p + aji] * power
return p

Efficiency:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rrr

rrau

| g

11

3.3 Closest-Pair: Problem
'y

Find the two closest points inia set of:n points (in the two-
dimensional Cartesian plane).

Brute-force algorithm
Compute the distance between every: pair of distinct points

and return the indexes of the points for which the distance
IS the smallest.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Closest-Pair Brute-Force Algorithm (cont.)

I'r!

ALGORITHM BruteForceClosestPoints(P)

//Input: Alist Pofn (ll > 2) pOiﬂtS Pl = (Il, _\']), viRate Pn = (.\'n, }n)
//Output: Indices index1 and index2 of the closest pair of points
dmin < o<

fori —<1ton—1do
for j —i+1tondo
d < sqri((x; — x]-)2 +(y;i—»y j)z) /Isqrt 1s the square root function
ifd <dmin
dmin < d: index] < i; index2 « j
return index]1, index?2

Efficiency:

How to make 1t faster?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Brute-korce Strengths and \\Weaknesses
rrs

Strengtins SE s
wide applicability
simplicity
yields reasonable algorithms for some important problems

(e.g., matrix multiplication, sorting, searching, String
matching)

V\/eaknesses
rarely yields efficient algorithms

some brute-force algorithms are unacceptably slow
Not as constructive as some other design techniques

11

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

| g

3.4 Exhaustive Search
14
A brute force solution to a problemimvolving search for an e

element with a special property, usually among
combinatorial objects such as permutations, combinations, or

subsets of a set.

Method:

generate a list ofrall' potential solutions to the problem in a
systematic manner: (see algorithms in Sec. 5.4)

evaluate potential solutions one by one, disqualifying
Infeasible ones and; for an optimization problem, keeping
track of: the best one found so far

When search ends, announce the solution(s) founa

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

111

Example 1: Traveling Salesman Problem
I11,
Given n cities withr known distances between each pair, find

the shortest tour that passes throughi all the cities exactly.
once before returning to the starting city,

Alternatively: Find shortest Hamiltonian circuit ina
Weighted connected grapn

Example: a cycle that passes through

all the vertices of the graph

2
e G exactly once
5 3
8 4
O O

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. (K

111

TSP by Exhaustive Search
1.

Tour Cost
a—b—c—d—a 2+3+7+5 = 17 e Z Q
a—b—d—c—a 2+4+7+8 = 21 5 3 .
a—c—b—d—a 3+3+4+5 = 20 8
a—c—d—b—a S+7+4+2 = 21
a—d—b—c—a o+4+3+38 = 20
a—d—c—b—a o+ 7+3+2 = 17
\More tours?
[_ess tours?
: Efficiency:
‘ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson

[Education, Inc. Upper Saddle River, NJ. All Rights Reserved 14

Example 2: Knapsack Problem
rrs

Given n items:
Weights: Wy W, ... w,
values: vy %, ... v,
a knapsack of:capacity \\/
Find most valtable subset of the items that fit into the knapsack

Examples Knapsack capacity \W=16
item_weight_ value

% 20
5 $30
10 $50
St 3 $10
I m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
m Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

Knapsack Problem by Exhaustive Search

I

Supset _Total'weight Total value
i 2 $20
2} 5 $30
{3} 10 $50
! 5 $10
{12} 7 $50
{1,3} 12 $70
1.4} 7 $30
{23} 15 $80
2.4 10 $40
3,4} 15 $60
{1,2,3} 17 not feasible
12,4} 12 $60
{1,3,4} 17 not feasible
{2,3,4} 20 not feasible
Sy {1,2,3,4} 22 not feasible Efficiency:
I : A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

Example 35 Tthe Assignment Problem

113

There are n people Who need to e assigned to n jJols, one
PEFrSeN PEr: Job. Tihne cost ofiassigning Person 1to job i is Ci].
Find aniassignment that minimizes the total cost.

Person 1
Person 2
Person 3
Person 4

9

9]
S
5

Jobl Job 2 Job3 Job4

3

o 0 B N
© B o

.
3
4

Algorithmic Plan: Generate all legitimate assignments, compuite

thelr costs, and select the cheapest one.

How many assighments are there?

|

-

=y [0SE the problem asithe oneabout a cost matrix:

l‘~ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

| g

144

Assignment Problem by Exhaustive Search

9 2 7 8
43 7
C =
5 8 1 8
/7 6 9
Assignment (col.#s) Total Cost
1,2, 3,4 0+4+1+4=18
1, 2,4 3 04+-44-8+9=30
1,3, 2,4 04+-3+8+4=24
1,8, 4,2 0+3+8+6=26
1, 4,2, 3 O+7+8+9=33
1, 4,3, 2 O+7+1+6=23

ELC.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

[11.

18

Final Comments on Exhaustive Search”l

rrau

Exhaustive-search algorithms run in a realistic amount of
time only on very small instances

In some cases, there are much better alternatives!
EUler circunts
shortest paths
minimumi spanning tree
assignment problem

In many/ cases, exnaustive search or Its variation Is the only
Known Way/ torget exact solution

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

111

3.9 Graph Traversal Algorithms '

rrau
Many problems require processing all'graph vertices (ana
edges) In systematic fashion

Graph traversal algorithms:

Depth-first search (DES)

Breadth-first search (BES)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

111

Depth-First Search (DES) '

rra
Visits graph’s vertices by always moving away from last

visited vertex to unvisited one, backtracks if:-no adjacent
unvisited vertex is available.

Uses a stack

a vertex is pushed onto the stack when it’s reached for the
first time

a Vertex Is popped offithe stack wheni it becomes a dead
end, I.e., When there IS no adjacent unvisited vertex

“Redraws” graph in tree-like fashion (with tree edges anad
pack edges for undirected graph)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

11

Pseucdocode ofi DES

ALGORITHM DFS(G)

/Mmplements a depth-first search traversal of a given graph
/[[Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
//in the order they’ve been first encountered by the DFES traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count <0
for each vertex vin V do
if v is marked with 0

dfs(v)

dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v by a path
//and numbers them in the order they are encountered
/Ivia global variable count
count < count + 1; mark v with count
for each vertex w in V adjacent to v do
if w 1s marked with 0

dfs(w)

Example: DES traversal ofiundirected graph
1.
O 0 o066 O

DES traversal stack: DES tree:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

111

Example: DES traversal ofiundirected graph
r'rs

DES forest:

DES traversal stack:

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

| W
144

111

Notes on DES
'yl

rrau
DES can be implemented with graphs represented as:

adjacency matrices: O(\/?)
adjacency lists: O(|V|+|E|)

Yields two distinct ordering ofi Vertices:
order in which vertices are first encountered (pushed onto stack)
order in which vertices become dead-ends (popped offistack)

Applications:
checking connectivity, finding connected components
checking acyclicity A vertex of a connected graph is said to be its

. b : if its removal with all edges
finding articulation points incident to it breaks the graph into disjoint pieces.
searching state-space ofiproblems for solution (Al)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

Breadth-first search (BES)
rrs

rrau

\/ISItS grrapn Vertices by moving across to all'the neighbors
oftlast visited vertex

Instead of a stack, BES USES a quete

Similar: to level-by-level'tree traversal

“Redraws” graph in tree-like fashion (With tree edges and
Cross edges for undirected graph)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

111

Pseucdocode ofi BES

ALGORITHM BFS(G)

//[Implements a breadth-first search traversal of a given graph
/Mnput: Graph G = {V, E)
//Output: Graph G with its vertices marked with consecutive integers
//in the order they have been visited by the BFS traversal
mark each vertex in V with 0 as a mark of being “unvisited™
count <0
for each vertex v in V do
if v 1s marked with O

Ufs(v)
bfsiv)

/!visits all the unvisited vertices connected to vertex v by a path
/land assigns them the numbers in the order they are visited
/Ivia global variable count
count <— count + 1: mark v with counr and initialize a queue with v
while the queue is not empty do
for cach vertex w in V adjacent to the front vertex do
if w is marked with O

count < count + 1; mark w with count
add w to the queue
remove the front vertex from the queue

Education, Inc. Upper Saddle River, J. All Rights Reserved.

Example ofi BES traversal'of:undirected graph

[11,
®© 0 o6 O

BES traversal queue: BEStree:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

111

Example: BES traversal of: undirected graph
r'rs

BES forest:

BES traversal queue:

aq Cy d3 €4 f5 fJﬁ
97 hg g ho

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

| W
144

Notes on BES
'yl

rrau
BES has same efficiency as DES and can be implemented
with graphs represented as:
adjacency matrices: O(\V?)
adjacency lists: O(|V|+|E])

Yields single ordering ofivertices (order added/deleted frrom
gueue IS the same)

Applications: same as DES, but can also find paths frrom a
vertex to all'other vertices with the smallest numiber: of
edges

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 3 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 30

111

	Slide 1: Chapter 3: Brute Force
	Slide 2: 3.1 Brute-Force Sorting Algorithm
	Slide 3: Analysis of Selection Sort
	Slide 4: 3.2 Brute-Force String Matching
	Slide 5: Examples of Brute-Force String Matching
	Slide 6: Pseudocode and Efficiency
	Slide 7: Brute-Force Polynomial Evaluation
	Slide 8: Polynomial Evaluation: Improvement
	Slide 9: 3.3 Closest-Pair Problem
	Slide 10: Closest-Pair Brute-Force Algorithm (cont.)
	Slide 11: Brute-Force Strengths and Weaknesses
	Slide 12: 3.4 Exhaustive Search
	Slide 13: Example 1: Traveling Salesman Problem
	Slide 14: TSP by Exhaustive Search
	Slide 15: Example 2: Knapsack Problem
	Slide 16: Knapsack Problem by Exhaustive Search
	Slide 17: Example 3: The Assignment Problem
	Slide 18: Assignment Problem by Exhaustive Search
	Slide 19: Final Comments on Exhaustive Search
	Slide 20: 3.5 Graph Traversal Algorithms
	Slide 21: Depth-First Search (DFS)
	Slide 22: Pseudocode of DFS
	Slide 23: Example: DFS traversal of undirected graph
	Slide 24: Example: DFS traversal of undirected graph
	Slide 25: Notes on DFS
	Slide 26: Breadth-first search (BFS)
	Slide 27: Pseudocode of BFS
	Slide 28: Example of BFS traversal of undirected graph
	Slide 29: Example: BFS traversal of undirected graph
	Slide 30: Notes on BFS

