
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Chapter 2: Analysis of algorithms

Issues:

• correctness

• time efficiency

• space efficiency

• optimality

Approaches:

• theoretical analysis

• empirical analysis

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

2.1 Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of

repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most

towards the running time of the algorithm

 T(n) ≈ copC(n)

running time execution time

for basic operation

Number of times

basic operation is

executed

input size

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Input size and basic operation examples

Problem Input size measure Basic operation

Searching for key in a

list of n items

Number of list’s items,

i.e. n
Key comparison

Multiplication of two

matrices

Matrix dimensions or

total number of elements

Multiplication of two

numbers

Checking primality of

a given integer n

n’size = number of digits

(in binary representation)
Division

Typical graph problem #vertices and/or edges
Visiting a vertex or

traversing an edge

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds)

 or

 Count actual number of basic operation’s executions

Analyze the empirical data

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

Worst case: Cworst(n) – maximum over inputs of size n

Best case: Cbest(n) – minimum over inputs of size n

Average case: Cavg(n) – “average” over inputs of size n

• Number of times the basic operation will be executed on typical input

• NOT the average of worst and best case

• Expected number of basic operations considered as a random variable

under some assumption about the probability distribution of all

possible inputs

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

Example: Sequential search

Worst case

Best case

Average case

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

Types of formulas for basic operation’s count

Exact formula

 e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific

multiplicative constant

 e.g., C(n) ≈ 0.5 n2

Formula indicating order of growth with unknown

multiplicative constant

 e.g., C(n) ≈ cn2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Order of growth

Most important: Order of growth within a constant multiple

as n→∞

Example:

• How much faster will algorithm run on computer that is

twice as fast?

• How much longer does it take to solve problem of double

input size?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Values of some important functions as n → 

Recapitulation of the Analysis Framework

Both time and space efficiencies are measured as functions

of the algorithm’s input size.

Time efficiency is measured by counting the number of

times the algorithm’s basic operation is executed. Space

efficiency is measured by counting the number of extra

memory units consumed by the algorithm.

The efficiencies of some algorithms may differ significantly

for inputs of the same size. For such algorithms, we need to

distinguish between the worst-case, average-case, and best-

case efficiencies.

The framework’s primary interest lies in the order of

growth of the algorithm’s running time (extra memory

units consumed) as its input size goes to infinity.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

1.2 Asymptotic order of growth

A way of comparing functions that ignores constant factors and

small input sizes

O(g(n)): class of functions f(n) that grow no faster than g(n)

Θ(g(n)): class of functions f(n) that grow at same rate as g(n)

Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Big-oh

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Big-omega

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Big-theta

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of f(n) ≤ order

of growth of g(n) (within constant multiple),

i.e., there exist positive constant c and non-negative integer

n0 such that

 f(n) ≤ c g(n) for every n ≥ n0

Examples:

 10n is O(n2)

5n+20 is O(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

Some properties of asymptotic order of growth

f(n)  O(f(n))

f(n)  O(g(n)) iff g(n) (f(n))

If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n)  O(h(n))

Note similarity with a ≤ b

If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then

 f1(n) + f2(n)  O(max{g1(n), g2(n)})

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

Establishing order of growth using limits

lim T(n)/g(n) =

0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) > order of growth of g(n)

Examples:

• 10n vs. n2

• n(n+1)/2 vs. n2

n→∞

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

L’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule: If limn→ f(n) = limn→ g(n) =  and

 the derivatives f ´, g´ exist, then

Stirling’s formula: n!  (2n)1/2 (n/e)n

f(n)

g(n)
lim
n→

=
f ´(n)

g ´(n)
lim
n→

Example: log2 n vs. n

Example: 2n vs. n!

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Orders of growth of some important functions

All logarithmic functions loga n belong to the same class
(log n) no matter what the logarithm’s base a > 1 is

All polynomials of the same degree k belong to the same class:
akn

k + ak-1n
k-1 + … + a0  (nk)

Exponential functions an have different orders of growth for
different a’s

order log n < order n (>0) < order an < order n! < order nn

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Basic asymptotic efficiency classes

1 constant

log n logarithmic

n linear

n log n n-log-n or linearithmic

n2 quadratic

n3 cubic

2n exponential

n! factorial

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

2.3 Time efficiency of nonrecursive algorithms

General Plan for Analysis

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is
executed

Simplify the sum using standard formulas and rules (see
Appendix A)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Useful summation formulas and rules

liu1 = 1+1+ ⋯ +1 = u - l + 1

 In particular, 1in1 = n - 1 + 1 = n  (n)

1in i = 1+2+ ⋯ +n = n(n+1)/2  n2/2  (n2)

1in i
2 = 12+22+ ⋯ +n2 = n(n+1)(2n+1)/6  n3/3  (n3)

0in a
i = 1 + a + ⋯ + an = (an+1 - 1)/(a - 1) for any a  1

 In particular, 0in 2
i = 20 + 21 + ⋯ + 2n = 2n+1 - 1  (2n)

(ai ± bi) = ai ± bi cai = cai liuai = limai + m+1iuai

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Example 1: Maximum element

No need to distinguish the best, worst, and average cases here!

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

Example 2: Element uniqueness problem

Consider worst case only!

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

Example 3: Matrix multiplication

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

Example 4: Counting binary digits

It cannot be investigated the way the previous examples are.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

2. 4 Plan for Analysis of Recursive Algorithms

Decide on a parameter indicating an input’s size.

Identify the algorithm’s basic operation.

Check whether the number of times the basic op. is executed
may vary on different inputs of the same size. (If it may, the
worst, average, and best cases must be investigated
separately.)

Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

Example 1: Recursive evaluation of n!

Definition: n ! = 1  2  …  (n-1)  n for n ≥ 1 and 0! = 1

Recursive definition of n!: F(n) = F(n-1)  n for n ≥ 1 and

 F(0) = 1

Size:

Basic operation:

Recurrence relation:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

Solving the recurrence for M(n)

M(n) = M(n-1) + 1, M(0) = 0

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 30

Example 2: The Tower of Hanoi Puzzle

1

2

3

Recurrence for number of moves:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 31

Solving recurrence for number of moves

M(n) = 2M(n-1) + 1, M(1) = 1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 32

Tree of calls for the Tower of Hanoi Puzzle

 n

n-1 n-1

n-2 n-2 n-2 n-2

1 1

...
2

1 1

2

1 1

2

1 1

2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 33

Example 3: Counting #bits

The number of additions A(n) made by the algorithm

A(n) = A(n/2) + 1 for n > 1

A(1) = 0

Let n = 2k
 , So we have A(2k) = A(2k−1) + 1 for k > 0,

A(20) = 0.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 34

Example 3: Counting #bits (Cont.)

Using backward substitutions to solve

A(2k) = A(2k−1) + 1 for k > 0,

A(20) = 0.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 35

2.5 Fibonacci numbers

The Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, …

The Fibonacci recurrence:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

General 2nd order linear homogeneous recurrence with

constant coefficients:

 aX(n) + bX(n-1) + cX(n-2) = 0

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 36

Solving aX(n) + bX(n-1) + cX(n-2) = 0

Set up the characteristic equation (quadratic)

 ar2 + br + c = 0

Solve to obtain roots r1 and r2

General solution to the recurrence

if r1 and r2 are two distinct real roots: X(n) = αr1
n + βr2

n

if r1 = r2 = r are two equal real roots: X(n) = αrn + βnr
n

Particular solution can be found by using initial conditions

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 37

Application to the Fibonacci numbers

F(n) = F(n-1) + F(n-2) or F(n) - F(n-1) - F(n-2) = 0

Characteristic equation:

Roots of the characteristic equation:

General solution to the recurrence:

Particular solution for F(0) =0, F(1)=1:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 38

Computing Fibonacci numbers

1. Definition-based recursive algorithm

The numbers of additions satisfies the following recurrence

equation.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 39

Computing Fibonacci numbers

Solve the following recurrence equation.

Transform it into homogenous recurrence equation to solve

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 40

Computing Fibonacci numbers

2. Nonrecursive definition-based algorithm

Only n-1 additions!

3. Explicit formula algorithm

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 41

Computing Fibonacci numbers

1. Definition-based recursive algorithm

2. Nonrecursive definition-based algorithm

3. Explicit formula algorithm

4. Logarithmic algorithm based on formula:

F(n-1) F(n)

F(n) F(n+1)

0 1

1 1
=

n

for n≥1, assuming an efficient way of computing matrix powers.

Empirical Analysis of Algorithms

General Plan for the Empirical Analysis

1. Understand the experiment’s purpose.

2. Decide on the efficiency metric M to be measured and the

measurement unit (an operation count vs. a time unit).

3. Decide on characteristics of the input sample (its range,

size, and so on).

4. Prepare a program implementing the algorithm (or

algorithms) for the experimentation

5. Generate a sample of inputs.

6. Run the algorithm (or algorithms) on the sample’s inputs

and record the data observed.

7. Analyze the data obtained.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 42

Algorithm Visualization

Algorithm visualization can be defined as the use of images

to convey some useful information about algorithms.

There are two principal variations of algorithm

visualization

• Static algorithm visualization, which shows an algorithm’s progress

through a series of still images

• Dynamic algorithm visualization, also called algorithm animation,

which shows a continuous, movie-like presentation of an

algorithm’s operations.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 43

Algorithm Visualization: Example 1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 44

Initial and final screens of a typical visualization of a sorting

algorithm using the bar representation

Algorithm Visualization: Example 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 45

Initial and final screens of a typical visualization of a sorting

algorithm using the scatterplot representation

	Slide 1: Chapter 2: Analysis of algorithms
	Slide 2: 2.1 Theoretical analysis of time efficiency
	Slide 3: Input size and basic operation examples
	Slide 4: Empirical analysis of time efficiency
	Slide 5: Best-case, average-case, worst-case
	Slide 6: Example: Sequential search
	Slide 7: Types of formulas for basic operation’s count
	Slide 8: Order of growth
	Slide 9: Values of some important functions as n  
	Slide 10: Recapitulation of the Analysis Framework
	Slide 11: 1.2 Asymptotic order of growth
	Slide 12: Big-oh
	Slide 13: Big-omega
	Slide 14: Big-theta
	Slide 15: Establishing order of growth using the definition
	Slide 16: Some properties of asymptotic order of growth
	Slide 17: Establishing order of growth using limits
	Slide 18: L’Hôpital’s rule and Stirling’s formula
	Slide 19: Orders of growth of some important functions
	Slide 20: Basic asymptotic efficiency classes
	Slide 21: 2.3 Time efficiency of nonrecursive algorithms
	Slide 22: Useful summation formulas and rules
	Slide 23: Example 1: Maximum element
	Slide 24: Example 2: Element uniqueness problem
	Slide 25: Example 3: Matrix multiplication
	Slide 26: Example 4: Counting binary digits
	Slide 27: 2. 4 Plan for Analysis of Recursive Algorithms
	Slide 28: Example 1: Recursive evaluation of n!
	Slide 29: Solving the recurrence for M(n)
	Slide 30: Example 2: The Tower of Hanoi Puzzle
	Slide 31: Solving recurrence for number of moves
	Slide 32: Tree of calls for the Tower of Hanoi Puzzle
	Slide 33: Example 3: Counting #bits
	Slide 34: Example 3: Counting #bits (Cont.)
	Slide 35: 2.5 Fibonacci numbers
	Slide 36: Solving aX(n) + bX(n-1) + cX(n-2) = 0
	Slide 37: Application to the Fibonacci numbers
	Slide 38: Computing Fibonacci numbers
	Slide 39: Computing Fibonacci numbers
	Slide 40: Computing Fibonacci numbers
	Slide 41: Computing Fibonacci numbers
	Slide 42: Empirical Analysis of Algorithms
	Slide 43: Algorithm Visualization
	Slide 44: Algorithm Visualization: Example 1
	Slide 45: Algorithm Visualization: Example 2

