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Chapter 2: Analysis of: algorithms

ISSUES:
COrreCtness
time efficiency.
Space efficiency
optimality.

Approaches:
theoretical analysis
empirical analysis
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2.1 Theoretical analysis ofi time efficiency '

Time efficiency 1s analyzed by determining the number: of
repetitions ofi the basic operation as a function of inputsize

Basic operation: the operation that contributes most
towards the running time ofi the algorithm

Input size

T(n) = ¢, C(N)

running time  ayecution time Number of times

for basic operation basic operation is
executed
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Input size and basic operation example's"

v 0

Problem

Input size measure

Basic operation

Searching for key in a
lIst ofin Items

Number of list’s items,
I.e. N

Key comparison

Multiplication of: tWo
Matrices

Matrix dimensions or:
total number: ofielements

Multiplication ofi two
nUMBErS

Checking primality of
a given integer n

n’size = number: of digits
(In‘binary. representation)

Division

Typical graph problem

#vertices and/or edges

\ISIting a Vertex or
traversing an edge

iid
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Empirical analysis of time efficiency
rrr
Select a specific (typical) sample ol inputs
Use physical unit ofitime (e.g., milliseconds)
or

Count actual number of basic operation’s executions

Analyze the empirical data

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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BEeSt-Case, average-case, WOoKSt-Case I

rrau
For some algorithms efficiency depends on form of input:

\Worst case: €. «(N) — maximum oVer INPULS of Size n
Best case: Cp (M) — mMINimum: OVEer Inputs ofisize n

Average case: C, (n) — “average” over inputs of size n
Number: of: times the basic operation will e executed on typical input
NOI the average of:worst and best case

EXxpected number: of basic operations considered as a random variable
under: some assumption about the probability distribution of all
possible Inputs
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Example: Sequential search

ALGORITHM SequentialSearch(A[0..n — 1], K)
//Searches for a given value in a given array by sequential search
/Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
/1 or —1 if there are no matching elements

[ <0

while i < and A[i] # K do
i <1+ 1

if i < nreturn

else return —1

\\/orst case

Best case

“w . Average case

'y
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Types ot tormulas for basic operation’s count
I
EXxact formula
e.0., C(n) = n(n-1)/2

Formula indicating order: of: growth With Specific
multiplicative constant

e.0., C(n)= 0.5 n?

Formula indicating order: ofigrowth With unknown
multiplicative constant

e.g., C(n) =cn?

11
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Orader of th
rder: ofigrow 1Y

rrau
Most Importants Order ofigrowth within a constant multiple
dS N—00

Example:

How much faster will algorithm: rtin on computer: that IS
twice as fast?

How much longer: does It take to solve problem of:double
INpUt size?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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\/alties ofisome iImportant functions as ' —> oo

e
10
102
103
104
10°
108

log,n n

3.3
6.6
10
13
17
20

10

102
103
104
10°
108

nlog, n
3.3-10

6.6-107
1.0-104
1.3-10°
1.7-108
2.0-107

e
10
104
108
108
101
10*

LL
10
10°
10°
102
10
1018

I

ST nl
10 3.6-10°
1.3-10%0  9.3.10%%7

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

| Yy
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Recapitulation of the Analysis Eramework
1.

Both time and space efficiencies are measured as functions

of the algorithm’s input size.

[iime efficiency 1s measured by counting the number: of
times the algorithm’s basic operation is executed. Space
efficiency Is measured by counting the numier: of extra
MEMOKY. UNits consumed by the algorithm.

['he efficiencies of:some algorithms may. differ significantly,
for Inputs ofithe same size. For such algorithms, We need to
distinguish between the Worst-case, average-case, and hest-
case effiCiencies.

The framework’s primary interest lies in the order of
srowth of the algorithm’s running time (extra memory
Lnits consumed) as I1ts InpLt Size goes to mfinity.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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1.2 A totiC order: of th
symptotic order: of grow Y

rra
A Way oficomparing functions that ignores constant factors and
small input Sizes

O(a(n)): class of functions f(n) that grow no faster than g(n)

O(g(n)): class offfunctions f(n) that grow at same_rate as g(n)

0(g(n)): class ofifunctions f(n) that grow at least as fast as g(n)

111
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doesn't
matter

orn | AT

Figure 2.1 Big-oh notation: t(n) € O(g{n))
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.




Big-0mega

Fig. 2.2 Big-omega notation: #(n) € 2(g(n))

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.



Big-theta

doesn't
matter

Figure 2.3 Big-theta notation: t(n) € &(g(n))
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Establishing order ofigrowth using the definition
I
Definition: f(n)1s in O(g(n)) it order ofigrowth of: f(n) < order
ofigrowth of:g(n) (Within constant multiple),

I.€., there exist positive constant ¢ and non-negative Integer
N, such that

f(n) =< c g(n) forevery n=n,

Examples:
10n 1S O(n?)

5n+2011s O(n)

111
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SOME Properties ofiasymptotic order ofigrowth
I'rf

i(n) e O(i(n))
f(n) e O(g(n)) 11T g(n) eQ(t(n))

IT:1:(n) € O(g(n)) and g(n) e O(h(n)), then f(n) e O(h(n))

Note similarity withra< b

I 1,(n) € O(g,(n))and f5(n) e O(ag,(n)) , then
f3(n) +15(n) € O(max{g,(n); 9;(n)5)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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Establishing order ofigrowth using [imits
r'rr

0 order of growth of T(n) < order of growth of g(n)

lim T(n)/g(n) = c >0 order of growth of T(n) = order of growth of g(n)
N—00
o order of growth of T(n) > order of growth of g(n)
Examples:
« 10n VS. n?
e n(n+1)/2 V/S. n?
=
ﬂ‘
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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I.’Hopital’s rule and Stirling’s formula

rrr

rrau
I’Hopital’s rule: If im, . f(n)=lim, . g(n) = co ana
the derivatives {7, g° exist, then

im W iy ()

e 0(N) s g (M)
Example: 1og, n Vs. n

Example: 27 vs. n!

Stirling’s formula: n! = (27n)Y2 (n/e)"

111
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Orders of growth ofisome important functions
FIT
All logarithmic functions log, n belong to the same class
O(log n) no matter what the logarithm’s base a > 1 IS

All'polynomials of the same degree k belong to the same class:
a N+ a, nN<t+ ... +a, e O(nY

Exponential functions a* have different orders of: growth for:
different a’s

order log n < order n? (o>0) < order a® < order n! < order n"

11
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Basic asymptotic efficiency Classes

Irr

rrau

1 constant

log N logarithmic
n linear

nlogn n-10g-n or linearithmic
n? guadratic
ne cubic
P exponential
ni factorial
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2 7
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2.3 llime efficiency off nonrecursive algorithms

11

I
General Plan for Analysis

[Decide on parameter n indicating inputsize

Identify algorithm’s basic operation

[Determine Worst, average, and best cases for input ofisize n

Set up a sum for the nNUMIPEr: of times the PasIC operation IS
executed

Simplify the sum using standard formulas and rules (see
Appendix A)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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Usetul summation formulas and rules
r'rr

ZI5i5u1:1+1+"°+l:u-|+1 (A

In particular, ¥,__..1=n-1+1=n e G(n)
Yicien = 142+ .- +n = n(n+1)/2 = n4/2 € O(N?)
Y cien 12 = 12422+ .-« +n2 = n(N+1)(2n+1)/6 = n°/3 € B(N°)

Yocicnd =1+a +.-+al = (@ -1D)f(a-1) foranya=1
In particular, ¥, 2" =20+ 21+ ... £ 20 =20+ 1 e @(2")

Y(aEb;) =Za£2b;  Xea; = C2ay T @ = Biciem@i t Lni<icy

111
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Example 1: Maximum element

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A

maxval < A[0]
fori < 1ton —1do
if Ali] > maxval
maxval < Ali]
return maxval

No need to distinguish the best, worst, and average cases here!

id
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Example 2: Element UnIQUENESS proble’nh

ALGORITHM UniqueFElements(A[0..n — 1))

//Determines whether all the elements in a given array are distinct
//Input: An array A[O..n — 1]
//Output: Returns “true” if all the elements in A are distinct

// and “false” otherwise
fori < Oton —2do
for j«<i+1ton—1do
if A[i]= A[/] return false
return true

Consider worst case only!

i

144
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Example s: Matrix multiplication Y
vrw
ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[O..n — 1. 0..n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
/[Output: Matrix C = AB
fori < Oton —1do

forj <0ton—-1do
Cli, j] < 0.0
fork < Oton 1do
Cli, j] < Cli, j]+ Ali, k] = B[k, j]

return C

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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Example 43 Counting binary digits

ALGORITHM Binary(n)

/[Input: A positive decimal integer n

/Output: The number of binary digits in »’s binary representation
count <1
while n > 1 do
count < count + 1
n<|nj/2]
return count

It cannot be investigated the way: the previous examples are.

count = [log, n| + 1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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2. 4 Plan for Analysis of: Recursive Algorithms

11

I

Decide on a parameter indicating an input’s size.
Identity the algorithm’s basic operation.

Check whether the number: ofitimes the basic op. IS executed
may/ vary on different inputs of: the same size. (It may, the
WOFSE, average, and best cases must be investigated
separately.)

SEt L a recurrence relationwith an appropriate initial
condition expressing the nUMBEK of: times the PasIC op. IS
executed.

Solve the recurrence (or, at the very least, establish Its
solution’s order of growth) by backward substitutions or
another method.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27



Example 1: Recursive evaluation ofin! T

Y
Definition: n!l =1-2-... - (n-1)-n forn=1 and 0= 1 e
Recursive definition of nls () = E(n-1)-n forn =1 and
= (0)p=HI
ALGORITHM F(n)
/[Computes n! recursively
/Input: A nonnegative integer n
//Output: The value of n!
if » =0 return 1
elsereturn F(n — 1) xn
Slze:
Basic operation:
Ty RECUKreNnce relation:
- o A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
8 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28



| g

Solving the recurrence for M(n)

Mi(n) = M(n-1)+ 1, M(0) =0

144
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Example 2: The Tower off Hanoi Puzzle”’

rrau

Recurrence for NUMPEK of MOVES:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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SoIVINg rFecUrrence for nUMBDEr of MOVES
r'rr

rrau

M(n) = 2M(n-1) + 1, M(1) = 1

144
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Iiree of: calls for: the Tower: ofi Hanoir Puzzle
'

i

il
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Example 3: Counting #0ItS

ALGORITHM BinRec(n)
/Mnput: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation
if n = 1return 1
else return BinRec(|n/2]) + 1

The number of additions A(n) made by the algorithm
A(n)=A(n/2)+1forn>1
A1) =0

Let n = 2%, So we have A(2k)=A(2x!) + 1 for k >0,
A(2°) = 0.

144
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Example 3: Counting #bits (Cont.)

Using backward substitutions to solve

A(2K) =A%) + 1 fork >0,
A(2°) =0,

A=A +1 substitute A2 1) = A2K2) + 1
=[A2"?) +1]+1=A(2"?) +2 substitute A(2*7?) = A7) +1
=[AQH +1]+2=402%) +3

=AQ) +i

= AR 4+ k.

A=A + k =k,
A(n) =log, n € ®(log n).

k =log, n,

—

| -
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2.5 Eibonaccr numbers

TThe Fibonaccl nUMBers:
0,1,1,2,3,5, 8,13, 21, ...

Tihe Fibonaccl recUrrence:
E(n) = KE(n-1) + F(n-2)
2(0) =0
=

General 279 order: linear homogeneous FeCUrrence with

constant coefficients:
aX(n) + bX(n-1) + cX(n-2) =0

11
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Solving  aX(n) + bX(N-1) + cX(N-2) = O’"

rrau
Set up the characteristic equation (quadratic)

arz+br+c=0

Solve torobtain rFeots ry and r;

(General solution to the recurrence
I, and r; are two distinct real roots: X(n) = ar,"+ pr"
I, =1, = rare two equal real roots::  X(n) = ar+ Bnr"

Particular solution can be found by using iitial conditions

111
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Application to the Filbonaccr NUMIBERS

F(n) = E(n-1) + B(n-2) or ) -EKEn-1) - F(n-2) =0

Characteristic equation:

RoOts of the characteristic equation:

2

Fay

General solution to the FeCUKFENCE: fat e (1 + "/5) + B (

Ty where ¢ = (1 +/5)/2 ~1.61803 and ¢ = —1/¢ ~ —0.61803.°
. m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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Computing Fibonacci NUMIOErS

Definition-based recursive algorithm

ALGORITHM F(n)

//Computes the nth Fibonacci number recursively by using its definition
/[Input: A nonnegative integer n

//Output: The nth Fibonacci number
if n <1 return n
elsereturn F(n — 1)+ F(n — 2)

The numibers offadditions satisfies the following recurrence
equation.

An)=An—-1D+An-2)+1 forn>1,

A0)=0, A1) =0.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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Computing Fibonacer NUMIELS T

Solve the following Fecurrence equation.

AmM)=An—-1)+An—-2)+1 forn=>1,

A0) =0, A(l) =0,
T'ranstorm It Into Nemogenous Fecurrence equation to solve
[A) +1] = [An =) +1] - [A(n —2) + 1] =0
substituting B(n) = A(n) + 1:

Bn) — B(n—1)— B(n —2) =0,

B(0) =1, B(l)=1. So B(n) = F(n + 1), and

An)=Bm)—1=Fn+1) —1= iﬁ(qﬁ”“ —¢"h — 1.

7

A(n) € ©(¢")

. m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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Computing Fibonacci NUMIOErS

Nonrecursive definition-based algorithm

ALGORITHM Fib(n)

//Computes the nth Fibonacci number iteratively by using its definition
/Mnput: A nonnegative integer n

//Output: The nth Fibonacci number

F[0] < 0; F[1] <1
fori < 2tondo

Fli]l < F[i — 1]+ F[i — 2]
return F[n]

Only n-1 additions!
Explicit formula algorithm

. 1 .
F(n) = —Stp” rounded to the nearest integer.

7
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Computing Fibonacci NUMIOErS

Definition-based recursive algorithm
Nonrecursive definition-based algorithm
Explicit formula algorithm

[Logarithmic algorithm based on formula:

Fin-l) Fm) = o0 1 "
F(n) F(n+l) 1
- for Nn=1, assuming an efficient way of:computing matrix POWers.
—
. m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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Empirical Analysis oft Algorithms
General Plan for the Empirical Analysis
Understand the experiment’s purpose.

[Decide oni the efficiency metric M to e measured and the
measurement unit (an operation count vs. a time unit).

[Decide on characteristics of the input sample (Its range,
SiZe, and so on).

Prepare a program implementing the algorithm (or
algorithms) for the experimentation

Generate a sample of inputs.

Run the algorithm (or algorithms) on the sample’s inputs
and record the data observed.

Analyze the data obtained.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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Algorithm \isualization
rrr
Algorithm visualization can be defined as the Use offimages
to convey some usefuliinformation about algorithms.

Ihere are two principal variations of algorithm
visualization

Static algorithm visualization, which shows an algorithm’s progress
through a series of still images

Dynamic algorithm visualization, also called algorithmianimation,
Whichishows a continuious, movie-like presentation ofian
algorithm’s operations.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 43



Algorithm Visualization: Example 1

Initial and final screens of a typical visualization of a sorting
algorithm using the bar representation

gﬁ.pplet Viewer: SortDemo_class ]
Applet Applet

PROBLEM | Seort e ALGORITHM | Selection Sort 5 PROBLEM | Sort ~|  ALGORITHM |SelectionSort |

I II|DIUH DIUlllIH

Selection Sort has completed - Number of comparisons: 45, Number of exchanges: 8

4
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Algorithm Visualization: Example 2

Initial and final screens of a typical visualization of a sorting
algorithm using the scatterplot representation

0 x
Applet
PROBLEM Sot  w| aiGomTHM |SelectionSot v |

Run | Step Back Reset Exit
o
' -
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
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