| g

11

Chapter 2: Analysis of: algorithms

ISSUES:
COrreCtness
time efficiency.
Space efficiency
optimality.

Approaches:
theoretical analysis
empirical analysis

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rrr

rrau

2.1 Theoretical analysis ofi time efficiency '

Time efficiency 1s analyzed by determining the number: of
repetitions ofi the basic operation as a function of inputsize

Basic operation: the operation that contributes most
towards the running time ofi the algorithm

Input size

T(n) = ¢, C(N)

running time ayecution time Number of times

for basic operation basic operation is
executed

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

| g

Input size and basic operation example's"

v 0

Problem

Input size measure

Basic operation

Searching for key in a
lIst ofin Items

Number of list’s items,
I.e. N

Key comparison

Multiplication of: tWo
Matrices

Matrix dimensions or:
total number: ofielements

Multiplication ofi two
nUMBErS

Checking primality of
a given integer n

n’size = number: of digits
(In‘binary. representation)

Division

Typical graph problem

#vertices and/or edges

\ISIting a Vertex or
traversing an edge

iid

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

11

Empirical analysis of time efficiency
rrr
Select a specific (typical) sample ol inputs
Use physical unit ofitime (e.g., milliseconds)
or

Count actual number of basic operation’s executions

Analyze the empirical data

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

BEeSt-Case, average-case, WOoKSt-Case I

rrau
For some algorithms efficiency depends on form of input:

\Worst case: €. «(N) — maximum oVer INPULS of Size n
Best case: Cp (M) — mMINimum: OVEer Inputs ofisize n

Average case: C, (n) — “average” over inputs of size n
Number: of: times the basic operation will e executed on typical input
NOI the average of:worst and best case

EXxpected number: of basic operations considered as a random variable
under: some assumption about the probability distribution of all
possible Inputs

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

111

- m

Example: Sequential search

ALGORITHM SequentialSearch(A[0..n — 1], K)
//Searches for a given value in a given array by sequential search
/Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
/1 or —1 if there are no matching elements

[<0

while i < and A[i] # K do
i <1+ 1

if i < nreturn

else return —1

\\/orst case

Best case

“w . Average case

'y

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Types ot tormulas for basic operation’s count
I
EXxact formula
e.0., C(n) = n(n-1)/2

Formula indicating order: of: growth With Specific
multiplicative constant

e.0., C(n)= 0.5 n?

Formula indicating order: ofigrowth With unknown
multiplicative constant

e.g., C(n) =cn?

11

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

| g

| g

11

Orader of th
rder: ofigrow 1Y

rrau
Most Importants Order ofigrowth within a constant multiple
dS N—00

Example:

How much faster will algorithm: rtin on computer: that IS
twice as fast?

How much longer: does It take to solve problem of:double
INpUt size?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

\/alties ofisome iImportant functions as ' —> oo

e
10
102
103
104
10°
108

log,n n

3.3
6.6
10
13
17
20

10

102
103
104
10°
108

nlog, n
3.3-10

6.6-107
1.0-104
1.3-10°
1.7-108
2.0-107

e
10
104
108
108
101
10*

LL
10
10°
10°
102
10
1018

I

ST nl
10 3.6-10°
1.3-10%0 9.3.10%%7

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

| Yy
1id

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

111

Recapitulation of the Analysis Eramework
1.

Both time and space efficiencies are measured as functions

of the algorithm’s input size.

[iime efficiency 1s measured by counting the number: of
times the algorithm’s basic operation is executed. Space
efficiency Is measured by counting the numier: of extra
MEMOKY. UNits consumed by the algorithm.

['he efficiencies of:some algorithms may. differ significantly,
for Inputs ofithe same size. For such algorithms, We need to
distinguish between the Worst-case, average-case, and hest-
case effiCiencies.

The framework’s primary interest lies in the order of
srowth of the algorithm’s running time (extra memory
Lnits consumed) as I1ts InpLt Size goes to mfinity.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

1.2 A totiC order: of th
symptotic order: of grow Y

rra
A Way oficomparing functions that ignores constant factors and
small input Sizes

O(a(n)): class of functions f(n) that grow no faster than g(n)

O(g(n)): class offfunctions f(n) that grow at same_rate as g(n)

0(g(n)): class ofifunctions f(n) that grow at least as fast as g(n)

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

doesn't
matter

orn | AT

Figure 2.1 Big-oh notation: t(n) € O(g{n))
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Big-0mega

Fig. 2.2 Big-omega notation: #(n) € 2(g(n))

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Big-theta

doesn't
matter

Figure 2.3 Big-theta notation: t(n) € &(g(n))

©2012 Pearson Educatlon Inc Uer Saddle R|ver NJ All R|hts Reserved

Establishing order ofigrowth using the definition
I
Definition: f(n)1s in O(g(n)) it order ofigrowth of: f(n) < order
ofigrowth of:g(n) (Within constant multiple),

I.€., there exist positive constant ¢ and non-negative Integer
N, such that

f(n) =< c g(n) forevery n=n,

Examples:
10n 1S O(n?)

5n+2011s O(n)

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

| g

11

SOME Properties ofiasymptotic order ofigrowth
I'rf

i(n) e O(i(n))
f(n) e O(g(n)) 11T g(n) eQ(t(n))

IT:1:(n) € O(g(n)) and g(n) e O(h(n)), then f(n) e O(h(n))

Note similarity withra< b

I 1,(n) € O(g,(n))and f5(n) e O(ag,(n)) , then
f3(n) +15(n) € O(max{g,(n); 9;(n)5)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

Establishing order ofigrowth using [imits
r'rr

0 order of growth of T(n) < order of growth of g(n)

lim T(n)/g(n) = c >0 order of growth of T(n) = order of growth of g(n)
N—00
o order of growth of T(n) > order of growth of g(n)
Examples:
« 10n VS. n?
e n(n+1)/2 V/S. n?
=
ﬂ‘
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
8 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

I.’Hopital’s rule and Stirling’s formula

rrr

rrau
I’Hopital’s rule: If im, . f(n)=lim, . g(n) = co ana
the derivatives {7, g° exist, then

im W iy ()

e 0(N) s g (M)
Example: 1og, n Vs. n

Example: 27 vs. n!

Stirling’s formula: n! = (27n)Y2 (n/e)"

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

Orders of growth ofisome important functions
FIT
All logarithmic functions log, n belong to the same class
O(log n) no matter what the logarithm’s base a > 1 IS

All'polynomials of the same degree k belong to the same class:
a N+ a, nN<t+ ... +a, e O(nY

Exponential functions a* have different orders of: growth for:
different a’s

order log n < order n? (o>0) < order a® < order n! < order n"

11

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

| g

| g

11l

Basic asymptotic efficiency Classes

Irr

rrau

1 constant

log N logarithmic
n linear

nlogn n-10g-n or linearithmic
n? guadratic
ne cubic
P exponential
ni factorial
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2 7

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| g

2.3 llime efficiency off nonrecursive algorithms

11

I
General Plan for Analysis

[Decide on parameter n indicating inputsize

Identify algorithm’s basic operation

[Determine Worst, average, and best cases for input ofisize n

Set up a sum for the nNUMIPEr: of times the PasIC operation IS
executed

Simplify the sum using standard formulas and rules (see
Appendix A)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Usetul summation formulas and rules
r'rr

ZI5i5u1:1+1+"°+l:u-|+1 (A

In particular, ¥,__..1=n-1+1=n e G(n)
Yicien = 142+ .- +n = n(n+1)/2 = n4/2 € O(N?)
Y cien 12 = 12422+ .-« +n2 = n(N+1)(2n+1)/6 = n°/3 € B(N°)

Yocicnd =1+a +.-+al = (@ -1D)f(a-1) foranya=1
In particular, ¥, 2" =20+ 21+ ... £ 20 =20+ 1 e @(2")

Y(aEb;) =Za£2b; Xea; = C2ay T @ = Biciem@i t Lni<icy

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A

maxval < A[0]
fori < 1ton —1do
if Ali] > maxval
maxval < Ali]
return maxval

No need to distinguish the best, worst, and average cases here!

id

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

| g

Example 2: Element UnIQUENESS proble’nh

ALGORITHM UniqueFElements(A[0..n — 1))

//Determines whether all the elements in a given array are distinct
//Input: An array A[O..n — 1]
//Output: Returns “true” if all the elements in A are distinct

// and “false” otherwise
fori < Oton —2do
for j«<i+1ton—1do
if A[i]= A[/] return false
return true

Consider worst case only!

i

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

| g

i

| g

il

Example s: Matrix multiplication Y
vrw
ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[O..n — 1. 0..n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Tnput: Two n-by-n matrices A and B
/[Output: Matrix C = AB
fori < Oton —1do

forj <0ton—-1do
Cli, j] < 0.0
fork < Oton 1do
Cli, j] < Cli, j]+ Ali, k] = B[k, j]

return C

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

i

| g

144

Example 43 Counting binary digits

ALGORITHM Binary(n)

/[Input: A positive decimal integer n

/Output: The number of binary digits in »’s binary representation
count <1
while n > 1 do
count < count + 1
n<|nj/2]
return count

It cannot be investigated the way: the previous examples are.

count = [log, n| + 1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

| g

2. 4 Plan for Analysis of: Recursive Algorithms

11

I

Decide on a parameter indicating an input’s size.
Identity the algorithm’s basic operation.

Check whether the number: ofitimes the basic op. IS executed
may/ vary on different inputs of: the same size. (It may, the
WOFSE, average, and best cases must be investigated
separately.)

SEt L a recurrence relationwith an appropriate initial
condition expressing the nUMBEK of: times the PasIC op. IS
executed.

Solve the recurrence (or, at the very least, establish Its
solution’s order of growth) by backward substitutions or
another method.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

Example 1: Recursive evaluation ofin! T

Y
Definition: n!l =1-2-... - (n-1)-n forn=1 and 0= 1 e
Recursive definition of nls () = E(n-1)-n forn =1 and
= (0)p=HI
ALGORITHM F(n)
/[Computes n! recursively
/Input: A nonnegative integer n
//Output: The value of n!
if » =0 return 1
elsereturn F(n — 1) xn
Slze:
Basic operation:
Ty RECUKreNnce relation:
- o A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
8 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

| g

Solving the recurrence for M(n)

Mi(n) = M(n-1)+ 1, M(0) =0

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rrr

29

| g

144

Example 2: The Tower off Hanoi Puzzle”’

rrau

Recurrence for NUMPEK of MOVES:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 30

| g

SoIVINg rFecUrrence for nUMBDEr of MOVES
r'rr

rrau

M(n) = 2M(n-1) + 1, M(1) = 1

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 31

Iiree of: calls for: the Tower: ofi Hanoir Puzzle
'

i

il

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 32

| g

i

| g

Example 3: Counting #0ItS

ALGORITHM BinRec(n)
/Mnput: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation
if n = 1return 1
else return BinRec(|n/2]) + 1

The number of additions A(n) made by the algorithm
A(n)=A(n/2)+1forn>1
A1) =0

Let n = 2%, So we have A(2k)=A(2x!) + 1 for k >0,
A(2°) = 0.

144

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 33

Example 3: Counting #bits (Cont.)

Using backward substitutions to solve

A(2K) =A%) + 1 fork >0,
A(2°) =0,

A=A +1 substitute A2 1) = A2K2) + 1
=[A2"?) +1]+1=A(2"?) +2 substitute A(2*7?) = A7) +1
=[AQH +1]+2=402%) +3

=AQ) +i

= AR 4+ k.

A=A + k =k,
A(n) =log, n € ®(log n).

k =log, n,

—

| -

= . A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

34

| g

2.5 Eibonaccr numbers

TThe Fibonaccl nUMBers:
0,1,1,2,3,5, 8,13, 21, ...

Tihe Fibonaccl recUrrence:
E(n) = KE(n-1) + F(n-2)
2(0) =0
=

General 279 order: linear homogeneous FeCUrrence with

constant coefficients:
aX(n) + bX(n-1) + cX(n-2) =0

11

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rrr

35

Solving aX(n) + bX(N-1) + cX(N-2) = O’"

rrau
Set up the characteristic equation (quadratic)

arz+br+c=0

Solve torobtain rFeots ry and r;

(General solution to the recurrence
I, and r; are two distinct real roots: X(n) = ar,"+ pr"
I, =1, = rare two equal real roots:: X(n) = ar+ Bnr"

Particular solution can be found by using iitial conditions

111

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 36

Application to the Filbonaccr NUMIBERS

F(n) = E(n-1) + B(n-2) or) -EKEn-1) - F(n-2) =0

Characteristic equation:

RoOts of the characteristic equation:

2

Fay

General solution to the FeCUKFENCE: fat e (1 + "/5) + B (

Ty where ¢ = (1 +/5)/2 ~1.61803 and ¢ = —1/¢ ~ —0.61803.°
. m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
8 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 37

i

| g

id

Computing Fibonacci NUMIOErS

Definition-based recursive algorithm

ALGORITHM F(n)

//Computes the nth Fibonacci number recursively by using its definition
/[Input: A nonnegative integer n

//Output: The nth Fibonacci number
if n <1 return n
elsereturn F(n — 1)+ F(n — 2)

The numibers offadditions satisfies the following recurrence
equation.

An)=An—-1D+An-2)+1 forn>1,

A0)=0, A1) =0.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

38

Computing Fibonacer NUMIELS T

Solve the following Fecurrence equation.

AmM)=An—-1)+An—-2)+1 forn=>1,

A0) =0, A(l) =0,
T'ranstorm It Into Nemogenous Fecurrence equation to solve
[A) +1] = [An =) +1] - [A(n —2) + 1] =0
substituting B(n) = A(n) + 1:

Bn) — B(n—1)— B(n —2) =0,

B(0) =1, B(l)=1. So B(n) = F(n + 1), and

An)=Bm)—1=Fn+1) —1= iﬁ(qﬁ”“ —¢"h — 1.

7

A(n) € ©(¢")

. m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
8 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 39

i

| g

id

Computing Fibonacci NUMIOErS

Nonrecursive definition-based algorithm

ALGORITHM Fib(n)

//Computes the nth Fibonacci number iteratively by using its definition
/Mnput: A nonnegative integer n

//Output: The nth Fibonacci number

F[0] < 0; F[1] <1
fori < 2tondo

Fli]l < F[i — 1]+ F[i — 2]
return F[n]

Only n-1 additions!
Explicit formula algorithm

. 1 .
F(n) = —Stp” rounded to the nearest integer.

7

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

40

Computing Fibonacci NUMIOErS

Definition-based recursive algorithm
Nonrecursive definition-based algorithm
Explicit formula algorithm

[Logarithmic algorithm based on formula:

Fin-l) Fm) = o0 1 "
F(n) F(n+l) 1
- for Nn=1, assuming an efficient way of:computing matrix POWers.
—
. m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rrr

41

| g

11

Empirical Analysis oft Algorithms
General Plan for the Empirical Analysis
Understand the experiment’s purpose.

[Decide oni the efficiency metric M to e measured and the
measurement unit (an operation count vs. a time unit).

[Decide on characteristics of the input sample (Its range,
SiZe, and so on).

Prepare a program implementing the algorithm (or
algorithms) for the experimentation

Generate a sample of inputs.

Run the algorithm (or algorithms) on the sample’s inputs
and record the data observed.

Analyze the data obtained.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

v

rrr

42

| g

11

Algorithm \isualization
rrr
Algorithm visualization can be defined as the Use offimages
to convey some usefuliinformation about algorithms.

Ihere are two principal variations of algorithm
visualization

Static algorithm visualization, which shows an algorithm’s progress
through a series of still images

Dynamic algorithm visualization, also called algorithmianimation,
Whichishows a continuious, movie-like presentation ofian
algorithm’s operations.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 43

Algorithm Visualization: Example 1

Initial and final screens of a typical visualization of a sorting
algorithm using the bar representation

gﬁ.pplet Viewer: SortDemo_class]
Applet Applet

PROBLEM | Seort e ALGORITHM | Selection Sort 5 PROBLEM | Sort ~| ALGORITHM |SelectionSort |

I II|DIUH DIUlllIH

Selection Sort has completed - Number of comparisons: 45, Number of exchanges: 8

4

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 44

| g

Algorithm Visualization: Example 2

Initial and final screens of a typical visualization of a sorting
algorithm using the scatterplot representation

0 x
Applet
PROBLEM Sot w| aiGomTHM |SelectionSot v |

Run | Step Back Reset Exit
o
' -
m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2
8 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 45

	Slide 1: Chapter 2: Analysis of algorithms
	Slide 2: 2.1 Theoretical analysis of time efficiency
	Slide 3: Input size and basic operation examples
	Slide 4: Empirical analysis of time efficiency
	Slide 5: Best-case, average-case, worst-case
	Slide 6: Example: Sequential search
	Slide 7: Types of formulas for basic operation’s count
	Slide 8: Order of growth
	Slide 9: Values of some important functions as n  
	Slide 10: Recapitulation of the Analysis Framework
	Slide 11: 1.2 Asymptotic order of growth
	Slide 12: Big-oh
	Slide 13: Big-omega
	Slide 14: Big-theta
	Slide 15: Establishing order of growth using the definition
	Slide 16: Some properties of asymptotic order of growth
	Slide 17: Establishing order of growth using limits
	Slide 18: L’Hôpital’s rule and Stirling’s formula
	Slide 19: Orders of growth of some important functions
	Slide 20: Basic asymptotic efficiency classes
	Slide 21: 2.3 Time efficiency of nonrecursive algorithms
	Slide 22: Useful summation formulas and rules
	Slide 23: Example 1: Maximum element
	Slide 24: Example 2: Element uniqueness problem
	Slide 25: Example 3: Matrix multiplication
	Slide 26: Example 4: Counting binary digits
	Slide 27: 2. 4 Plan for Analysis of Recursive Algorithms
	Slide 28: Example 1: Recursive evaluation of n!
	Slide 29: Solving the recurrence for M(n)
	Slide 30: Example 2: The Tower of Hanoi Puzzle
	Slide 31: Solving recurrence for number of moves
	Slide 32: Tree of calls for the Tower of Hanoi Puzzle
	Slide 33: Example 3: Counting #bits
	Slide 34: Example 3: Counting #bits (Cont.)
	Slide 35: 2.5 Fibonacci numbers
	Slide 36: Solving aX(n) + bX(n-1) + cX(n-2) = 0
	Slide 37: Application to the Fibonacci numbers
	Slide 38: Computing Fibonacci numbers
	Slide 39: Computing Fibonacci numbers
	Slide 40: Computing Fibonacci numbers
	Slide 41: Computing Fibonacci numbers
	Slide 42: Empirical Analysis of Algorithms
	Slide 43: Algorithm Visualization
	Slide 44: Algorithm Visualization: Example 1
	Slide 45: Algorithm Visualization: Example 2

