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Chapter 2: Analysis of algorithms

Issues:

• correctness

• time efficiency

• space efficiency

• optimality

Approaches: 

• theoretical analysis

• empirical analysis
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2.1 Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of 

repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most 

towards the running time of the algorithm

                       T(n) ≈ copC(n)

running time execution time

for basic operation

Number of times 

basic operation is 

executed

input size
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Input size and basic operation examples

Problem Input size measure Basic operation

Searching for key in a 

list of n items

Number of list’s items,  

i.e. n
Key comparison

Multiplication of two 

matrices

Matrix dimensions or 

total number of elements

Multiplication of two 

numbers

Checking primality of 

a given integer n

n’size = number of digits 

(in binary representation)
Division

Typical graph problem #vertices and/or edges
Visiting a vertex or 

traversing an edge
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Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

Use physical unit of time (e.g.,  milliseconds)

        or

    Count actual number of basic operation’s executions

Analyze the empirical data
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Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

Worst case:    Cworst(n) – maximum over inputs of size n

Best case:        Cbest(n) –  minimum over inputs of size n

Average case:  Cavg(n) – “average” over inputs of size n

• Number of times the basic operation will be executed on typical  input

• NOT the average of worst and best case

• Expected number of basic operations considered as a random variable 

under some assumption about the probability distribution of all 

possible inputs
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Example: Sequential search

Worst case

Best case

Average case
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Types of formulas for basic operation’s count

Exact formula

            e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific 

multiplicative constant

            e.g., C(n) ≈ 0.5 n2

Formula indicating order of growth with unknown 

multiplicative constant

            e.g., C(n) ≈ cn2
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Order of growth 

Most important: Order of growth within a constant multiple 

as n→∞

Example:

• How much faster will algorithm run on computer that is 

twice as fast?

• How much longer does it take to solve problem of double 

input size?
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Values of some important functions as n → 



Recapitulation of the Analysis Framework

Both time and space efficiencies are measured as functions 

of the algorithm’s input size.

Time efficiency is measured by counting the number of 

times the algorithm’s basic operation is executed. Space 

efficiency is measured by counting the number of extra 

memory units consumed by the algorithm.

The efficiencies of some algorithms may differ significantly 

for inputs of the same size. For such algorithms, we need to 

distinguish between the worst-case, average-case, and best-

case efficiencies.

The framework’s primary interest lies in the order of 

growth of the algorithm’s running time (extra memory 

units consumed) as its input size goes to infinity.
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1.2 Asymptotic order of growth

A way of comparing functions that ignores constant factors and 

small input sizes

O(g(n)): class of functions f(n) that grow no faster than g(n)

Θ(g(n)): class of functions f(n) that grow at same rate as g(n)

Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)
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Big-oh
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Big-omega
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Big-theta
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Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of  f(n) ≤ order  

of growth of g(n) (within constant multiple),

i.e., there exist positive constant c and non-negative integer 

n0 such that

                f(n) ≤ c g(n) for every n ≥ n0 

Examples:

 10n is O(n2)

5n+20 is O(n)
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Some properties of asymptotic order of growth

f(n)  O(f(n))

f(n)  O(g(n)) iff g(n) (f(n)) 

If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n)  O(h(n)) 

Note similarity with a ≤ b

If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then

                 f1(n) + f2(n)  O(max{g1(n), g2(n)}) 
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Establishing order of growth using limits

lim T(n)/g(n) = 

0    order of growth of T(n)  <  order of growth of g(n) 

c > 0  order of growth of T(n) = order of growth of g(n) 

∞    order of growth of T(n) >  order of growth of g(n) 

Examples:

•  10n                vs.             n2 

•  n(n+1)/2        vs.             n2 

n→∞
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L’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule:  If limn→ f(n) = limn→ g(n) =   and 

                               the derivatives f ´, g´ exist, then 
        
        
        
        
        
        
        
        
 

Stirling’s formula:  n!  (2n)1/2 (n/e)n

         
      

  

f(n)

g(n)
lim
n→

= 
f ´(n)

g ´(n)
lim
n→

Example:  log2 n  vs. n

Example:  2n vs. n!
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Orders of growth of some important functions

All logarithmic functions loga n belong to the same class 
(log n) no matter what the logarithm’s base a > 1 is

All polynomials of the same degree k belong to the same class: 
akn

k + ak-1n
k-1 + … + a0  (nk) 

Exponential functions an have different orders of growth for 
different a’s

order log n  < order n (>0)  < order an  < order n! < order nn
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Basic asymptotic efficiency classes

1 constant

log n logarithmic

n linear

n log n n-log-n or linearithmic

n2 quadratic

n3 cubic

2n exponential

n! factorial
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2.3 Time efficiency of nonrecursive algorithms

General Plan for Analysis
 

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is 
executed

Simplify the sum using standard formulas and rules (see 
Appendix A)
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Useful summation formulas and rules

liu1 = 1+1+ ⋯ +1 = u - l + 1

     In particular, 1in1 = n - 1 + 1 = n  (n) 

1in i = 1+2+ ⋯ +n = n(n+1)/2   n2/2  (n2) 

1in i
2 = 12+22+ ⋯ +n2 = n(n+1)(2n+1)/6  n3/3  (n3) 

0in a
i = 1 + a + ⋯ + an = (an+1 - 1)/(a - 1)  for any a  1

         In particular, 0in 2
i = 20 + 21 + ⋯ + 2n = 2n+1 - 1  (2n ) 

(ai ± bi ) = ai ± bi         cai = cai       liuai = limai + m+1iuai 
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Example 1: Maximum element

No need to distinguish the best, worst, and average cases here!
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Example 2: Element uniqueness problem

Consider worst case only!
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Example 3: Matrix multiplication
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Example 4: Counting binary digits  

It cannot be investigated the way the previous examples are. 
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2. 4 Plan for Analysis of Recursive Algorithms

Decide on  a parameter indicating an input’s size.

Identify the algorithm’s basic operation. 

Check whether the number of times the basic op. is executed 
may vary on different inputs of the same size.  (If it may, the 
worst, average, and best cases must be investigated 
separately.)

Set up a recurrence relation with an appropriate initial 
condition expressing the number of times the basic op. is 
executed.

Solve the recurrence (or, at the very least, establish its 
solution’s order of growth) by backward substitutions or 
another method.
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Example 1: Recursive evaluation of n!

Definition: n ! = 1  2  …  (n-1)  n  for n ≥ 1  and  0! = 1

Recursive definition of n!:  F(n) = F(n-1)  n  for n ≥ 1  and  

                                               F(0) = 1

Size:

Basic operation:

Recurrence relation:
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Solving the recurrence for M(n)

M(n) = M(n-1) + 1,  M(0) = 0
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Example 2: The Tower of Hanoi Puzzle

       

        

        

        

        

        

        

        
1

2

3

Recurrence for number of moves: 
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Solving recurrence for number of moves

M(n) = 2M(n-1) + 1,  M(1) = 1
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Tree of calls for the Tower of Hanoi Puzzle

       n

n-1 n-1

n-2 n-2 n-2 n-2

1 1

... ... ...
2

1 1

2

1 1

2

1 1

2
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Example 3: Counting #bits

The number of additions A(n) made by the algorithm

A(n) = A(n/2) + 1 for n > 1

A(1) = 0

Let n = 2k
 , So we have A(2k ) = A(2k−1) + 1 for k > 0, 

A(20 ) = 0.
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Example 3: Counting #bits (Cont.)

Using backward substitutions to solve

A(2k ) = A(2k−1) + 1 for k > 0, 

A(20 ) = 0.
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2.5 Fibonacci numbers

The Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, … 

The Fibonacci recurrence:

F(n) = F(n-1) + F(n-2) 

F(0) = 0   

F(1) = 1

General 2nd order linear homogeneous recurrence with 

constant coefficients:

                  aX(n) + bX(n-1) + cX(n-2) = 0
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Solving   aX(n) + bX(n-1) + cX(n-2) = 0

Set up the characteristic equation (quadratic)

     ar2 + br + c = 0

Solve to obtain roots r1 and r2

General solution to the recurrence

if r1 and r2 are two distinct real roots:  X(n) = αr1
n + βr2

n

if r1 = r2 = r are two equal real roots:      X(n) = αrn + βnr 
n

Particular solution can be found by using initial conditions
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Application to the Fibonacci numbers

F(n) = F(n-1) + F(n-2)  or  F(n) - F(n-1) - F(n-2) = 0

Characteristic equation:

 

Roots of the characteristic equation:

General solution to the recurrence:

Particular solution for F(0) =0, F(1)=1:
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Computing Fibonacci numbers

1. Definition-based recursive algorithm

The numbers of additions satisfies the following recurrence 

equation.
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Computing Fibonacci numbers

Solve the following recurrence equation.

Transform it into homogenous recurrence equation to solve 
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Computing Fibonacci numbers

2. Nonrecursive definition-based algorithm

Only n-1 additions!

3. Explicit formula algorithm
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Computing Fibonacci numbers

1. Definition-based recursive algorithm

2. Nonrecursive definition-based algorithm

3. Explicit formula algorithm

4. Logarithmic algorithm based on formula:

F(n-1)    F(n)

F(n)   F(n+1)

0   1

1    1
=

n

for n≥1, assuming an efficient way of computing matrix powers.



Empirical Analysis of Algorithms

General Plan for the Empirical Analysis

1. Understand the experiment’s purpose. 

2. Decide on the efficiency metric M to be measured and the 

measurement unit (an operation count vs. a time unit). 

3. Decide on characteristics of the input sample (its range, 

size, and so on). 

4. Prepare a program implementing the algorithm (or 

algorithms) for the experimentation

5. Generate a sample of inputs. 

6. Run the algorithm (or algorithms) on the sample’s inputs 

and record the data observed. 

7. Analyze the data obtained.
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Algorithm Visualization

Algorithm visualization can be defined as the use of images 

to convey some useful information about algorithms.

There are two principal variations of algorithm 

visualization

• Static algorithm visualization, which shows an algorithm’s progress 

through a series of still images 

• Dynamic algorithm visualization, also called algorithm animation, 

which shows a continuous, movie-like presentation of an 

algorithm’s operations.
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Algorithm Visualization: Example 1
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Initial and final screens of a typical visualization of a sorting 

algorithm using the bar representation



Algorithm Visualization: Example 2
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Initial and final screens of a typical visualization of a sorting 

algorithm using the scatterplot representation
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