
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

1.1 What is an algorithm?

An algorithm is a sequence of unambiguous instructions

for solving a problem, i.e., for obtaining a required

output for any legitimate input in a finite amount of

time.

“computer”

problem

algorithm

input output

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Euclid’s Algorithm

Problem: Find gcd(m,n), the greatest common divisor of two

nonnegative, not both zero integers m and n

Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?

Euclid’s algorithm is based on repeated application of equality

gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem

trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Two descriptions of Euclid’s algorithm

Step 1 If n = 0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value fo the remainder to r

Step 3 Assign the value of n to m and the value of r to n. Go to

Step 1.

while n ≠ 0 do

r ← m mod n

m← n

n ← r

return m

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Other methods for computing gcd(m,n)

Consecutive integer checking algorithm

Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainder is 0, go to Step 3;

otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is 0, return t and stop;

otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Other methods for gcd(m,n) [cont.]

Middle-school procedure

Step 1 Find the prime factorization of m

Step 2 Find the prime factorization of n

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors

and return it as gcd(m,n)

Is this an algorithm? Example:

60 = 2 . 2 . 3 . 5

24 = 2 . 2 . 2 . 3

gcd(60, 24) = 2 . 2 . 3 = 12

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

Sieve of Eratosthenes

Input: Integer n ≥ 2

Output: List of primes less than or equal to n

for p ← 2 to n do A[p] ← p

for p ← 2 to do

if A[p]  0 //p hasn’t been previously eliminated from the list

j ← p* p

while j ≤ n do

A[j] ← 0 //mark element as eliminated

j ← j + p

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 n

1.2 Algorithm design and analysis process

Understanding the Problem

Ascertaining the Capabilities of the Computational

Device

• Sequential Computer Architecture: Random-access

machine (RAM) Model → Sequential algorithms

• Parallel Computer Architecture → parallel algorithms

Choosing between Exact and Approximate

Problem Solving

A.Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

Algorithm design and analysis process (Cont.)

Selecting Algorithm Design Techniques

Designing an Algorithm and Data Structures

Methods of Specifying an Algorithm

• Pseudocode

• flowchart

Proving an Algorithm’s Correctness

Coding an Algorithm

A.Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Why study algorithms?

Theoretical importance

• the core of computer science

Practical importance

• A practitioner’s toolkit of known algorithms

• Framework for designing and analyzing algorithms for

new problems

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Two main issues related to algorithms

How to design algorithms

How to analyze algorithm efficiency

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Algorithm design techniques/strategies

Brute force

Divide and conquer

Decrease and conquer

Transform and conquer

Space and time tradeoffs

Greedy approach

Dynamic programming

Iterative improvement

Backtracking

Branch and bound

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Analysis of algorithms

How good is the algorithm?

• time efficiency

• space efficiency

Does there exist a better algorithm?

• lower bounds

• optimality

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

1.3 Important problem types

Sorting

Searching

String processing
Example: searching for a given word in a text

Graph problems
Examples: the traveling salesman problem and the

graph-coloring problem

Combinatorial problems

To find a combinatorial object—such as a

permutation, a combination, or a subset—that satisfies

certain constraints

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Important problem types (Cont.)

Geometric problems
Examples: the closest-pair problem and the convex-
hull problem

Numerical problems

Examples: solving equations and systems of equations,

computing definite integrals, evaluating functions

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

1.4 Fundamental data structures

list

• array

• linked list

• string

stack

queue

priority queue

graph

tree

set and dictionary

	Slide 1: 1.1 What is an algorithm?
	Slide 2: Euclid’s Algorithm
	Slide 3: Two descriptions of Euclid’s algorithm
	Slide 4: Other methods for computing gcd(m,n)
	Slide 5: Other methods for gcd(m,n) [cont.]
	Slide 6: Sieve of Eratosthenes
	Slide 7: 1.2 Algorithm design and analysis process
	Slide 8: Algorithm design and analysis process (Cont.)
	Slide 9: Why study algorithms?
	Slide 10: Two main issues related to algorithms
	Slide 11: Algorithm design techniques/strategies
	Slide 12: Analysis of algorithms
	Slide 13: 1.3 Important problem types
	Slide 14: Important problem types (Cont.)
	Slide 15: 1.4 Fundamental data structures

