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1.1 What is an algorithm?

An algorithm is a sequence of unambiguous instructions 

for solving a problem, i.e., for obtaining a required 

output for any legitimate input in a finite amount of 

time.

“computer” 

problem

algorithm

input output
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Euclid’s Algorithm

Problem: Find gcd(m,n), the greatest common divisor of two 

nonnegative, not both zero integers m and n

Examples:  gcd(60,24) = 12,    gcd(60,0) = 60,    gcd(0,0) = ? 

Euclid’s algorithm is based on repeated application of equality

gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem

trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12
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Two descriptions of Euclid’s algorithm

Step 1  If n = 0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value fo the remainder to r

Step 3  Assign the value of n to m and the value of r to n.  Go to

Step 1.

while n ≠ 0 do

r ← m mod n

m← n   

n ← r

return m
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Other methods for computing gcd(m,n)

Consecutive integer checking algorithm

Step 1  Assign the value of min{m,n} to t

Step 2  Divide m by t.  If the remainder is 0, go to Step 3;

otherwise, go to Step 4

Step 3  Divide n by t.  If the remainder is 0, return t and stop;

otherwise, go to Step 4

Step 4  Decrease t by 1 and go to Step 2
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Other methods for gcd(m,n) [cont.]

Middle-school procedure

Step 1  Find the prime factorization of m

Step 2  Find the prime factorization of n

Step 3  Find all the common prime factors

Step 4  Compute the product of all the  common prime factors

and return it as gcd(m,n)

Is this an algorithm? Example:

60 = 2 . 2 . 3 . 5

24 = 2 . 2 . 2 . 3

gcd(60, 24) = 2 . 2 . 3 = 12
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Sieve of Eratosthenes

Input: Integer n ≥ 2

Output: List of primes less than or equal to n

for p ← 2 to n do  A[p] ← p

for p ← 2 to           do

if A[p]  0  //p hasn’t been previously eliminated from the list

j ← p* p

while j ≤ n do

A[j] ← 0  //mark element as eliminated

j ← j + p

Example: 2  3  4  5  6  7  8  9 10  11  12  13  14  15  16  17  18  19 20

 n



1.2 Algorithm design and analysis process

Understanding the Problem

Ascertaining the Capabilities of the Computational 

Device

• Sequential Computer Architecture: Random-access 

machine (RAM) Model → Sequential algorithms

• Parallel Computer Architecture → parallel algorithms

Choosing between Exact and Approximate 

Problem Solving
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Algorithm design and analysis process (Cont.)

Selecting Algorithm Design Techniques

Designing an Algorithm and Data Structures

Methods of Specifying an Algorithm

• Pseudocode

• flowchart

Proving an Algorithm’s Correctness

Coding an Algorithm
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Why study algorithms?

Theoretical importance

• the core of computer science

Practical importance

• A practitioner’s toolkit of known algorithms

• Framework for designing and analyzing algorithms for 

new problems
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Two main issues related to algorithms

How to design algorithms

How to analyze algorithm efficiency
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Algorithm  design techniques/strategies

Brute force

Divide and conquer

Decrease and conquer

Transform and conquer

Space and time tradeoffs

Greedy approach

Dynamic programming

Iterative improvement

Backtracking 

Branch and bound
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Analysis of algorithms

How good is the algorithm?

• time efficiency

• space efficiency

Does there exist a better algorithm?

• lower bounds

• optimality
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1.3 Important problem types

Sorting

Searching

String processing
Example: searching for a given word in a text

Graph problems
Examples: the traveling salesman problem and the 

graph-coloring problem

Combinatorial problems

To find a combinatorial object—such as a 

permutation, a combination, or a subset—that satisfies 

certain constraints
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Important problem types (Cont.)

Geometric problems
Examples: the closest-pair problem and the convex-
hull problem

Numerical problems

Examples: solving equations and systems of equations, 

computing definite integrals, evaluating functions
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1.4 Fundamental data structures

list

• array

• linked list

• string 

stack

queue

priority queue

graph

tree

set and dictionary
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