California State University Stanislaus Department of Computer Science Syllabus

Instructor Dr. Xuejun Liang My Office: DBH 282

Office Hours: TuTh 1:00 p.m.-2:00 p.m. & W 3:00 p.m. - 4:00 p.m.

ZOOM Meeting ID: 4438930033, Phone: (209) 667-3169, Email: xliang@csustan.edu

Class Information

Classroom: SB 139 / Online

Class Days & Times: MWF 1:00 p.m. - 1:50 p.m.

Class Website: https://www.cs.csustan.edu/~xliang/Courses3/CS4430-25F

Class Server: wozniak.csustan.edu (used for programming assignments and projects) Class Canvas: Use your class Canvas account to submit homework assignments.

Class Canvas: Use your class Canvas account to submit nomework assignments.

Class Modality: Hybrid Online - Synchronous. In-person class meetings will be on campus at

the room, day, and time listed. Online class meetings will be at the day and time listed. Students must be available at the class times listed in the Class Schedule and must attend in person on days indicated as such by the instructor. Students do not have the option to choose in-person or virtual, nor opt for asynchronous participation.

Catalog Description

CS4300 Compiler Theory. (3 Units) Pre-requisites: CS 3100 and MATH 2300. Lexical, syntactic, and semantic analyses and syntax directed translation of programming languages. Includes symbol table construction, error diagnostics, and code generation.

Required Textbook

Compilers: Principles, Techniques, & Tools, 2/E, by Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman, Addison Wesley, 2007. ISBN: 9-780-321-486-813

Reference Books

- 1. Compiler Construction: Principles and Practice, by Kenneth C. Louden, PWS Publishing Company, 1997
- 2. flex & bison: Text Processing Tools, by John Levine, O'Reilly Media, Inc., 2009
- 3. Modern Compiler Implementation in Java, 2/E, by Andrew W. Appel and Jens Palsberg, Cambridge University Press, 2002
- 4. Modern Compiler Implementation in C, by Andrew W. Appel and Maia Ginsburg, Cambridge University Press, 2004
- 5. Advanced Compiler Design and Implementation, by Muchnick Steven, Morgan Kaufmann, 2008
- 6. Engineering a Compiler, 2nd Edition, by Keith Cooper and Linda Torczon, Addison Wesley, 2011

Handouts: (Available on Class Website)

- 1. Cool Reference Manual
- 2. Tour of Cool Support Code
- 3. Cool Runtime System
- 4. Cool Example Programs

Reference Materials: (Available on Class Website)

- 1. Bison manual
- 2. Java CUP manual

Course Outcomes

Students who successfully complete the course must be able to

- 1. Build a compiler for a (simplified) programming language.
- 2. Utilize compiler construction tools, such as generators of scanners and parsers.
- 3. Apply algorithms for lexical analysis.
- 4. Apply algorithms for LL(1), LR(1), and LALR(1) parsing.
- 5. Select an intermediate representation, translate expressions, and check types.
- 6. Describe how the compiler creates and manages a run-time environment to support execution of its target programs.
- 7. Describe how the code generator performs instruction selection, register allocation and assignment, and instruction ordering.

Course Outline* (Major Topics and Weekly Schedule)

Date	Topics Covered			
Week 1:	Syllabus and Introduction of the class, The Structure of a			
08/20, 08/22	Compiler, The Science of Building a Compiler, Compiler			
	Technology, and Programming Language Basics.			
Week 2:	Introduction to Compiler Frontend: Syntax Definition, Syntax-	Ch2		
08/25, 08/27, 08/29	Directed Translation, and Parsing.			
Week 3:	Introduction to Compiler Frontend: A Translator for Simple	Ch2		
09/03, 09/05	Expressions, Lexical Analysis, Symbol Tables, and			
	Intermediate Code Generation			
	COOL to prepare for PA1			
Week 4:	Lexical Analysis: Specification of Tokens, Recognition of	Ch3		
09/08, 09/10, 09/12	Tokens, and Lexical-Analyzer Generator: Lex and Flex.			
Week 5:	Lexical Analysis: Finite Automata, From Regular Expressions	Ch3		
09/15, 09/17, 09/19	, 09/19 to Automata,			
	Construct an NFA from a Lex Program, and From RE to DFA			
	Directly			
	Using lex/flex to prepare for PA2			
	Test #1 (Chapters 1 - 3)			
Week 6:	Syntax Analysis: Context-Free Grammars, Writing a Grammar,	Ch 4		
09/22, 09/24, 09/26	Top-Down Parsing,			
Week 7:	Syntax Analysis: Top-Down Parsing and Bottom-Up Parsing	Ch4		

09/29, 10/01, 10/03	Simple LR and More Powerful LR Parsers.			
Week 8: 10/06, 10/08, 10/10	Syntax Analysis: Using Ambiguous Grammars, Parser Generators Using yacc/bision to prepare for PA3 Test #2 (Chapters 3 - 4)			
Week 9: 10/13, 10/15, 10/17		Ch4		
Week 10: 10/20, 10/22, 10/24	Syntax-Directed Translation: Syntax-Directed Definitions and Evaluation Orders for SDD's			
Week 11: 10/27, 10/29, 11/31	Syntax-Directed Translation: Applications of Syntax-Directed Translation and Syntax-Directed Translation Schemes.			
Week 12: 11/03, 11/05, 11/07	Semantic Analysis: Types and Declarations and Type Checking			
Week 13: 11/10, 11/12, 11/16	Intermediate-Code Generation: Translation of Expressions, Control Flow, and Backpatching	Ch6		
Week 14: 11/17, 11/19, 11/21	Week 14: Run-Time Environments: Storage Organization, Stack			
	Thanksgiving holiday.			
Week 15: 12/01, 12/03, 12/05	Code Generation: Issues in the Design of a Code Generator, The			
Week 16:				
12/08	Review for the Final Exam			
Week 17: 12/17:	Final Examination: 11:15 a.m 1:15 p.m. Final Examination Schedule https://www.csustan.edu/class-schedule/finals-schedule			
1	1	l		

^{*}It is subject to change.

Grading Scale will be assigned on a standard scale as below:

A	В	C	D	F
90-100	75-89	60-74	45-59	<45

Clustering of grades may cause the grading scale to be lowered (to your benefit), but it will not be raised.

Evaluation

The overall course grade will be the weighted sum of the points earned in the following categories:

Participation	Homework	Projects	Tests	Final Exam
10%	20%	15%	30%	20%

Other Polices

- 1. I will accept late assignments for a maximum of three days (including holidays) with a point deduction of 20% per day.
- 2. There will be no makeup exams except in a verified emergency with immediate notification.

Academic Honesty

The work you do for this course will be your own, unless otherwise specified. You are not to submit other people's or AI generated work and represent it as your own. I consider academic honesty to be at the core of the University's activities in education and research. Academic honesty is always expected in this course.

Accommodations for Students with Disabilities

Students with disabilities seeking academic accommodations must first register with the Disability Resource Services (DRS) program, located in MSR 210, ph. (209) 667-3159. Students are encouraged to talk with the instructor regarding their accommodation needs after registering with DRS.

Students Support Services

Services Director can be accessed via the link: <u>Student Services | California State University</u> Stanislaus (csustan.edu)