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Cool Overview

e Classroom Object Oriented Language

* Designed to
— Be implementable in a short time

— Give a taste of implementation of modern
e Abstraction
» Static typing
* Reuse (inheritance)
* Memory management

* But many things are left out



A Simple Example

class Point {
X : Int <« 1;
y : Int <« 2;
};

* Cool programs are sets of class definitions
— class = a collection of attributes and methods
— instances of a class are objects

* No global variables

* No separate notion of subroutines
— Entry point is a special class Main with a special method main
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Cool Objects

class Point {
x : Int <« 3;
y : Int; (* use default value ¥*)
}s
e The expression “new Point” creates a new
instance (i.e. object) of class Point

* An object can be thought of as a record with a
slot for each attribute

X Yy
3 0
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Methods

e A class defines methods for manipulating the attributes

class Point {
x : Int <« O;
y : Int <« 0O;
movePoint (newx : Int, newy : Int): Point {
{ X < newx;
Y < newy;
self;
} -- close block expression
}; -- close method
}; -- close class

 Methods can refer to the current object using self
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Information Hiding in Cool

 Methods are global

e Attributes are local to a class
— They can only be accessed by the class’s methods

 Example:
class Point {

x () : Int { x };
setx (newx : Int) : Int { x «< newx };

};
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Methods

* Each object knows how to access the code of a method
* Asif the object contains a slot pointing to the code

X

y movePoint

0

0

*

e |n reality implementations save space by sharing these
pointers among instances of the same class

movePoint

X y methods
010 ~~
010

010 ]

*




Inheritance

 We can extend functionality of points to colored
points using subclassing

class ColorPoint inherits Point {
color : String < “red”;
movePoint (newx : Int, newy : Int): Point {
{ color <« “green”;
X < nNewx; y < newy;
self;

};
x__ vy color movePoint
0[O0 |red| =

};
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Cool Types

* Every class is a type

* Every* class inherits from exactly one other

class
— Forms a tree of classes (class hierarchy)

* Types of all variables must be declared

— Compiler infers types for expressions



* Object
* Int

* Bool

e String

Sean Treichler

Base Classes

root of the class hierarchy
Integers

boolean values: true, false
character strings
input/output support
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Cool Type Checking

x : A;
X < new B;

Is well-typed if A is an ancestor of B in the class
hierarchy

— Anywhere an instance of A is expected an instance of B can
be used

“Well-typed” = satisfies language’s type-checking rules

Type safety:
— A well-typed program cannot result in runtime type errors



Method Invocation and Inheritance

 Methods are invoked by dispatching them to the target object

* Understanding dispatch in the presence of inheritance is a
subtle aspect of OO languages

p : Point;
p < new ColorPoint;
p.movePoint(1,2) ;

— p has static type Point
— p has dynamic type ColorPoint
— p.movePoint must invoke the ColorPoint version
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Method Invocation

Example: invoke one-argument method m

/e m(e\
1. Evaluate e
2 2. Find class of e
5 3. Find code of m
|
. | )
. _’//’3'/* self — 4. Evaluate e
X <« — 5. Bind self and x
method <method code>| | | 6. Run method
table 6 /—




Other Expressions

* Expression language
— every expression has a type and a value

— Loops: while E loop E pool

— Conditionals if E then E else E fi

— Case statement case Eof x: Type = E; ... esac
— Arithmetic, logical operations

— Assignment Xx<— E

— Primitive I/O out_string(s), in_string(), ...

* Missing features:
— arrays, floating point operations, exceptions, ...



Other Expressions (Cont.)

* Blocks
— { <expr>; ... <expr>; }
* Let

— let <id1> : <typel> [ <- <exprl>], ..., <idn>:
<typen> [ <- <exprn> ] in <expr>



Cool Memory Management

* Memory is allocated every time new is
invoked

* Memory is deallocated automatically when an
object is not reachable anymore

— Done by the garbage collector (GC)
— Garbage collector is part of the Cool runtime
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