COOL

Sean Treichler CS143 — Summer 2014 — Lecture 2

Cool Overview

e Classroom Object Oriented Language

* Designed to
— Be implementable in a short time

— Give a taste of implementation of modern
e Abstraction
» Static typing
* Reuse (inheritance)
* Memory management

* But many things are left out

A Simple Example

class Point {
X : Int <« 1;
y : Int <« 2;
};

* Cool programs are sets of class definitions
— class = a collection of attributes and methods
— instances of a class are objects

* No global variables

* No separate notion of subroutines
— Entry point is a special class Main with a special method main

Sean Treichler CS143 — Summer 2014 — Lecture 2

Cool Objects

class Point {
x : Int <« 3;
y : Int; (* use default value ¥*)
}s
e The expression “new Point” creates a new
instance (i.e. object) of class Point

* An object can be thought of as a record with a
slot for each attribute

X Yy
3 0

Sean Treichler CS143 — Summer 2014 — Lecture 2

Methods

e A class defines methods for manipulating the attributes

class Point {
x : Int <« O;
y : Int <« 0O;
movePoint (newx : Int, newy : Int): Point {
{ X < newx;
Y < newy;
self;
} -- close block expression
}; -- close method
}; -- close class

 Methods can refer to the current object using self

Sean Treichler CS143 — Summer 2014 — Lecture 2 10

Information Hiding in Cool

 Methods are global

e Attributes are local to a class
— They can only be accessed by the class’s methods

 Example:
class Point {

x () : Int { x };
setx (newx : Int) : Int { x «< newx };

};

Sean Treichler CS143 — Summer 2014 — Lecture 2

11

Methods

* Each object knows how to access the code of a method
* Asif the object contains a slot pointing to the code

X

y movePoint

0

0

*

e |n reality implementations save space by sharing these
pointers among instances of the same class

movePoint

X y methods
010 ~~
010

010]

*

Inheritance

 We can extend functionality of points to colored
points using subclassing

class ColorPoint inherits Point {
color : String < “red”;
movePoint (newx : Int, newy : Int): Point {
{ color <« “green”;
X < nNewx; y < newy;
self;

};
x__ vy color movePoint
0[O0 |red| =

};

Sean Treichler CS143 — Summer 2014 — Lecture 2 13

Cool Types

* Every class is a type

* Every* class inherits from exactly one other

class
— Forms a tree of classes (class hierarchy)

* Types of all variables must be declared

— Compiler infers types for expressions

* Object
* Int

* Bool

e String

Sean Treichler

Base Classes

root of the class hierarchy
Integers

boolean values: true, false
character strings
input/output support

CS143 — Summer 2014 — Lecture 2

15

Cool Type Checking

x : A;
X < new B;

Is well-typed if A is an ancestor of B in the class
hierarchy

— Anywhere an instance of A is expected an instance of B can
be used

“Well-typed” = satisfies language’s type-checking rules

Type safety:
— A well-typed program cannot result in runtime type errors

Method Invocation and Inheritance

 Methods are invoked by dispatching them to the target object

* Understanding dispatch in the presence of inheritance is a
subtle aspect of OO languages

p : Point;
p < new ColorPoint;
p.movePoint(1,2) ;

— p has static type Point
— p has dynamic type ColorPoint
— p.movePoint must invoke the ColorPoint version

Sean Treichler CS143 — Summer 2014 — Lecture 2 17

Method Invocation

Example: invoke one-argument method m

/e m(e\
1. Evaluate e
2 2. Find class of e
5 3. Find code of m
|
. |)
. _’//’3'/* self — 4. Evaluate e
X <« — 5. Bind self and x
method <method code>| | | 6. Run method
table 6 /—

Other Expressions

* Expression language
— every expression has a type and a value

— Loops: while E loop E pool

— Conditionals if E then E else E fi

— Case statement case Eof x: Type = E; ... esac
— Arithmetic, logical operations

— Assignment Xx<— E

— Primitive I/O out_string(s), in_string(), ...

* Missing features:
— arrays, floating point operations, exceptions, ...

Other Expressions (Cont.)

* Blocks
— { <expr>; ... <expr>; }
* Let

— let <id1> : <typel> [<- <exprl>], ..., <idn>:
<typen> [<- <exprn>] in <expr>

Cool Memory Management

* Memory is allocated every time new is
invoked

* Memory is deallocated automatically when an
object is not reachable anymore

— Done by the garbage collector (GC)
— Garbage collector is part of the Cool runtime

	lecture02 10
	lecture02 11
	lecture02 12
	lecture02 13
	lecture02 14
	lecture02 15
	lecture02 16
	lecture02 17
	lecture02 18
	lecture02 19
	lecture02 20
	lecture02 6
	lecture02 7
	lecture02 8
	lecture02 9

