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Introduction

2

A sequence of intermediate representations

Logical structure of a compiler front end

Syntax trees are high level

Three-address code can range from high-level to low-level, 

depending on the choice of operators
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Static versus Dynamic Checking

• Static checking: checked at compile time 

– Compiler enforces programming language’s static 

semantics

– Typical examples of static checking:

• Type checks

• Flow-of-control checks

• Uniqueness checks

• Name-related checks

• Dynamic semantics: checked at run time

– Compiler generates verification code to enforce 

programming language’s dynamic semantics
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Type Checking, Overloading, 

Coercion, Polymorphism

class X { virtual int m(); } *x;

class Y: public X { virtual int m(); } *y;

int op(int), op(float);

int f(float);

int a, c[10], d;

d = c + d;  // FAIL

*d = a;  // FAIL

a = op(d);  // OK: static overloading (C++)

a = f(d);  // OK: coersion of d to float

a = x->m();       // OK: dynamic binding (C++) 

vector<int> v; // OK: template instantiation
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Flow-of-Control Checks

myfunc()

{ …

  break; // ERROR

}

myfunc()

{ …

  switch (a)

  { case 0:

      …

      break; // OK

    case 1:

      …

  }

}

myfunc()

{ …

  while (n)

  { …

    if (i>10)

      break; // OK

  }

}
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Uniqueness Checks

myfunc()

{ int i, j, i; // ERROR 

  …

}

cnufym(int a, int a) // ERROR

{   …

}

struct myrec

{ int name;

};

struct myrec // ERROR

{ int id;

};



Outlines (Sections)

1. Variants of Syntax Trees

2. Three-Address Code

3. Types and Declarations

4. Translation of Expressions

5. Type Checking

6. Control Flow

7. Backpatching

8. Switch-Statements

9. Intermediate Code for Procedures
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1. Variants of Syntax Trees
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A directed acyclic graph (called a DAG) for an expression 

identifies the common subexpressions of the expression

a + a * (b - c) + (b - c) * d

Value number

i = i + 10

DAG

DAG

Array

to  symbol

table



2. Three-Address Code
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t1 =  b - c

t2 = a * t1

t3 = a + t2

t4 = tl * d

t5 = t3 + t4

DAG Three-address code

In three-address code, there is at most one operator 

on the right side of an instruction. An address can 

be: name, constant, compiler-generated temporary.



Common Three-Address Instructions
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1. Assignment instruction  x = y op z

2. Assignment    x = op y

3. Copy instruction   x = y

4. Indexed copy instruction  x = y[i] and x[i] = y

5. Address and pointer assignment: x = &y, x = *y, and *x = y

6. Unconditional jump  goto L

7. Conditional jump   if x relop y goto L

8. Conditional jump  if x goto L and ifFalse x goto L

9. Procedure call p(xl, x2, . . . , xn): param xl

param x2

……

param xn

call p, n



Two Ways of Assigning Labels to 

Three-Address Statements
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do i = i+ l; while (a[i] < v) ;



Quadruples, Triples, and Indirect Triples
12

Three-address code Quadruples

Syntax tree
Triples

+ Triples

Indirect triples
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3. Type Expressions

• A type expression is either a basic type or is 

formed by applying a type constructor to type 

expressions

– Basic types: boolean, char, integer, float, etc.

– Type constructors: pointer-to, array-of, records and 

classes, list-of, templates, and functions (s → t).

– Type names: typedefs in C and named types in 

Pascal

• Type expressions may contain variables whose 

values are type expressions
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Graph Representations

 for Type Expressions

int *fun(char*,char*)

Tree

fun

args pointer

char

intpointer

char

pointer

DAG

fun

args pointer

char

intpointer

int [2][3]

array

array

int

2

3

Tree
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Cyclic Graph Representations

struct Node

{ int val;

  struct Node *next;

};

struct

val

pointerint

Internal compiler 

representation of 

the Node type: 

cyclic graph

next

Source 

program



Type Equivalence

• When type expressions are represented by graphs, two 

types are structurally equivalent if and only if one of 

the following conditions is true:

– They are the same basic type.

– They are formed by applying the same constructor to 

structurally equivalent types .

– One is a type name that denotes the other .

• If type names are treated as standing for themselves, 

then the first two conditions in the above definition 

lead to name equivalence of type expressions

16
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Structural Equivalence Example

• Two types are the same if they are structurally 

identical

• Used in C/C++, Java, C#

struct

val next

int

pointer

struct

val

int

pointer=

pointer

next



Type Equivalence Examples
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struct

val

int

pointers

pstruct Node

{ int val;

  struct Node *next;

};

struct Node s, *p;

p = &s; // OK

*p = s; // OK

p = s;  // ERROR

next

&s

*p



Storage Layout for Local Names
19

record { int tag; float x; float y; } q; int [5] a;

q.tag

q.x

q.y

4

Size Offset

8

8

0

4

12

a[0] 4

Size Offset

4

4

0

4

12

a[1]

a[2]

a[3]

a[4]
4

4 8

16

Type

Declarations



Computing Types and Their Widths
20

Type

Declarations



Sequences of Declarations
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Handling of field names in records

Computing the relative addresses of declared names



Example: 

Annotated Parse Tree for int [2][3]
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B



Example: 
Determine types and relative addresses

23

float x;

record { float x; float y; } p;

record { int tag; float x; float y; } q;

Line, id,   type,  offset,  width



4. Translation of Expressions
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S → id = E ; 

E → El + E2 

     |   - El

     |   ( El )

     |   id

Figure 6.19: Three-address code for expressions

S.code = E.code ||

               gen( top.get(id.lexeme) '=' E.addr)

E.addr = new Temp()

E.code = E1.code || E2.code ||

gen(E.addr '=' E1.addr '+' E2.addr)

E.addr = new Temp ()

E.code = El.code ||

               gen(E.addr  '='  'minus'  El.addr)

E.addr = E1.addr

E.code = El.code

E.addr = top.get(id.lexeme)

E.code = ' '

PRODUCTION SEMANTIC RULES

Example 

a = b + - c

tl = minus c

t2 = b + t1

a = t2



Translation of Expressions (cont.)
Incremental Translation
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S → id = E ; 

E → El + E2 

     |   - El

     |   ( El )

     |   id

Figure 6.20: Generating three-address code for expressions incrementally

{ gen( top.get(id.lexeme) '=' E.addr) ; }

{ E.addr = new Temp();

   gen(E.addr '=' El.addr '+' E2.addr) ; }

{ E.addr = new Temp() ;

   gen(E.addr '='  'minus'  El.addr) ; }

{ E.addr = El.addr; }

{ E.addr = top.get(id.lexeme) ;}

In the incremental approach, gen not only constructs a 

three-address instruction, but also appends the instruction 

to the sequence of instructions generated so far.



Addressing Array Elements
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Layouts for a two-dimensional array

(a) Row Major (b) Column Major

A[il][i2].addr = base + il  wl + i2  w2a[i].addr = base + i  w

A[il][i2]…[ik].addr = base + il  wl + i2  w2. ... + ik  wk          (6.4)



Translation of Array References
27

Figure 6.22: 

Semantic 

actions 

for 

array 

references



Translation of Array References (Cont.)

• Nonterminal L has three synthesized attributes:

1. L.addr denotes a temporary that is used while 

computing the offset for the array reference by 

summing the ij  wj in (6.4)

2. L.array is a pointer to the symbol-table entry for the 

array name. 

• L.array.base is the base address of the array.

• L.array.type is the type of the array.

3. L.type is the type of the subarray generated by L. 

• Assume t is a type, then

– t.width represents the width.

– t.elem gives the element type.

28



Example 6.12
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Three-address code for  c + a[i][j]Annotated parse tree for c + a[i][j]

a is a 23 array of integers

i, j, and c are integers



5. Type Checking

• To do type checking a compiler needs to assign a 

type expression to each component of the source 

program. 

• The compiler must then determine that these type 

expressions conform to a collection of logical 

rules that is called the type system for the source 

language

• Type checking can take on two forms: 

– Synthesis

– Inference

30



Rules for Type Checking

• Type synthesis builds up the type of an expression from 

the types of its subexpressions. 

• It requires names to be declared before they are used.

31

if f has type s → t and x has type s,

then expression f (x) has type t

if f (x) is an expression, 

then for some  and , f has type  →  and x has type 

• Type inference determines the type of a language 

construct from the way it is used.

• It does not require names to be declared



Type Conversions

• Widening conversions 

– preserve information 

• Narrowing conversions

– lose information

• Coercions (implicit conversions)

– are done automatically by the 

compiler. 

• Casts (explicit conversions)

– are done by programmer to 

write something to cause the 

conversion.

32

Narrowing

Widening



Introducing Type Conversions into 

Expression Evaluation

33

max(t1, t2) returns the maximum (or least 

upper bound)  of the two types t1 and t2 in

the widening hierarchy.

widen(a, t, w) generates type conversions 

if needed to widen an address a of type t 

into a value of type w.

x = 2 + 3.14

t1 = (float) 2

t2 =  t1 + 3.14

x =  t2



Overloading of Functions and Operators

34

if f can have type si → ti, for 1  i  n, where si  sj for i  j

and x has type sk, for some 1  k  n

then expression f(x) has type tk

void err () { ... }

void err (String s) { … }

A type-synthesis rule for overloaded functions

Overloaded function examples



6.5.4 Type Inference and Polymorphic Functions

35

fun length(x) =

if null(x) then 0 else length(tl(x)) + 1;

ML program for the length of a list

 list() → integer

The term "polymorphic" refers to any code fragment 

that can be executed with arguments of different types

Abstract syntax tree

The type of length

length([“sun”, “mon”, “tue”]) + 

length([10, 9, 8, 7]) returns 7

Example of use of length

Note: 6.5.4 and 6.5.5 need to be skipped for now.



Substitutions, Instances, and Unification

• A substitution S is a mapping from type variables to type 

expressions.

– S(t) = the result of applying the substitution S to the 

variables in type expression t.

• S() = integer

• t = list(), then S(t) = list(integer)

• t =  → , then S(t) = integer  → integer

• S(t) is called an instance of t.

• A substitution S is a unifier of two types t1 and t2 (tl and t2 

unify), if S(t1) = S(t2). 

• In the type inference algorithm, we substitute type 

variables by types to create type instances

36



Inferring a type for the function length
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fun length(x) = if null(x) then 0 else length(tl(x)) + 1;

n. list(n) → integer



6.5.5: An Algorithm for Unification

38

Examples 6.18: Consider the two type 

Expressions t1, t2, and the substitution S

t1 = 

t2 =

S(t1) = S(t2) = 

Equivalence classes

after unification



An Algorithm for Unification(Cont.)

39


	Slide 1: CS 4300: Compiler Theory   Chapter 6  Intermediate-Code Generation
	Slide 2: Introduction
	Slide 3: Static versus Dynamic Checking
	Slide 4: Type Checking, Overloading, Coercion, Polymorphism
	Slide 5: Flow-of-Control Checks
	Slide 6: Uniqueness Checks
	Slide 7: Outlines (Sections)
	Slide 8: 1. Variants of Syntax Trees
	Slide 9: 2. Three-Address Code
	Slide 10: Common Three-Address Instructions
	Slide 11: Two Ways of Assigning Labels to Three-Address Statements
	Slide 12: Quadruples, Triples, and Indirect Triples
	Slide 13: 3. Type Expressions
	Slide 14: Graph Representations  for Type Expressions
	Slide 15: Cyclic Graph Representations
	Slide 16: Type Equivalence
	Slide 17: Structural Equivalence Example
	Slide 18: Type Equivalence Examples
	Slide 19: Storage Layout for Local Names
	Slide 20: Computing Types and Their Widths
	Slide 21: Sequences of Declarations
	Slide 22: Example:  Annotated Parse Tree for int [2][3]
	Slide 23: Example:  Determine types and relative addresses
	Slide 24: 4. Translation of Expressions
	Slide 25: Translation of Expressions (cont.) Incremental Translation
	Slide 26: Addressing Array Elements
	Slide 27: Translation of Array References
	Slide 28: Translation of Array References (Cont.)
	Slide 29: Example 6.12
	Slide 30: 5. Type Checking
	Slide 31: Rules for Type Checking
	Slide 32: Type Conversions
	Slide 33: Introducing Type Conversions into Expression Evaluation
	Slide 34: Overloading of Functions and Operators
	Slide 35: 6.5.4 Type Inference and Polymorphic Functions
	Slide 36: Substitutions, Instances, and Unification
	Slide 37: Inferring a type for the function length
	Slide 38: 6.5.5: An Algorithm for Unification
	Slide 39: An Algorithm for Unification(Cont.)

