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Quick Review of Last Lecture

• Applications of SDD

– Construction of Syntax Trees During Top-Down Parsing

– The Structure of a Type



4. Syntax-Directed Translation Schemes

• Any SDT can be implemented by first building a 

parse tree and then performing the actions in a 

left-to-right depth-first order.

• Some SDT's can be implemented during parsing, 

without building a parse tree.

– But, not all SDT's can be implemented during parsing.

• Focus on the use of SDT's to implement two 

important classes of SDD's:

– LR-grammar and S-attributed SDD

– LL-grammar and L-attributed SDD
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Postfix Translation Schemes
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SDT's with all actions at the right ends of the 

production bodies are called postfix SDT's

Example: Postfix SDT implementing the desk calculator

Since the underlying grammar is LR, and the SDD is 

S-attributed, these actions can be correctly performed 

along with the reduction steps of the parser



Parser-Stack Implementation of Postfix SDT's
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Parser stack



Parser-Stack Implementation of Postfix SDT's
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Implementing the desk calculator on a bottom-up parsing stack



SDT's With Actions Inside Productions

• Consider a production: B → X {a} Y

– The action a is done after we have recognized X (if X is 

a terminal) or all the terminals derived from X (if X is a 

nonterminal) 

• More precisely

– If the parse is bottom-up, then we perform action a as 

soon as this occurrence of X appears on the top of the 

parsing stack.

– If the parse is top-down, we perform a just before we 

attempt to expand this occurrence of Y (if Y is a 

nonterminal) or check for Y on the input (if Y is a 

terminal) .
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Problematic SDT for infix-to-prefix 

translation during parsing

• Unfortunately, it is impossible to implement this SDT 
during either top-down or bottom-up parsing, because the 
parser would have to perform critical actions, like printing 
instances of * or +, long before it knows whether these 
symbols will appear in its input
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SDT's With Actions Inside Productions

• Consider a production: B → X {a} Y

– The action a is done after we have recognized X (if X is 

a terminal) or all the terminals derived from X (if X is a 

nonterminal) 

• Insert marker nonterminals to remove the embedded 

action and to change the SDT to a postfix SDT

– Rewrite the product with marker nonterminal M into

B → X M Y

M →  {a}

• Problems with inserting marker nonterminals

– May introduce conflicts in the parse table

– How to propagate inherited attributes?
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Any SDT Can Be Implemented

1. Ignoring the actions, parse the input and produce 

a parse tree as a result.

2. Then, examine each interior node N, say one for 

production A → . Add additional children to N 

for the actions in , so the children of N from left 

to right have exactly the symbols and actions of 

.

3. Perform a preorder traversal of the tree, and as 

soon as a node labeled by an action is visited, 

perform that action.
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Parse Tree With Actions Embedded
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3 * 5 + 4 + * 3 5 4
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Eliminating Left Recursion From SDT's

E → E + T  {print(‘+’);}

E → T

A →  R

R →  R

R → 

A → A 

A → 

E → T  R

R → + T  {print(‘+’);} R

R → 

When the order in which the actions in an SDT is 

needed to consider only, the actions are treated as 

if they were terminal symbols during transforming 

the grammar, 
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Eliminating Left Recursion (Cont.)

A → A1 Y  { A.a = g(A1.a, Y.y) }

A → X { A.a = f(X.x) }

A → X { R.i = f(X.x) }  R  { A.a = R.s }

R → Y { R1.i = g(R.i, Y.y) }  R1 { R.s = R1.s } 

R →  { R.s = R.i }

A → A Y

A → X

Consider the following SDD with a 

single recursive production, single 

nonrecursive production, and a 

single attribute of the left-recursive 

nonterminal.

Underlining grammar

A → X R

R → Y R

R → 
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Eliminating Left Recursion (Cont.)

A → A1 Y  { A.a = g(A1.a, Y.y) }

A → X { A.a = f(X.x) }

A.a = g(g(f(X.x), Y1.y), Y2.y)

Y2

Y1

X

A.a = g(f(X.x), Y1.y)

A.a = f(X.x)

A  A Y2

 A Y1 Y2

 X Y1 Y2

A → A Y

A → X

Consider input string XYY= XY1Y2
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R3.i = g(g(f(X.x), Y1.y), Y2.y)Y2

Y1

X

R2.i = g(f(X.x), Y1.y)

R1.i = f(X.x)

A



1. Flow of inherited attribute values

A → X R

R → Y R

R → 

A  X R

 X Y1 R

 X Y1 Y2 R

 X Y1 Y2

A → X { R.i = f(X.x) } R { A.a = R.s }

R → Y { R1.i = g(R.i, Y.y) } R1 { R.s = R1.s } 

R →  { R.s = R.i }

Consider the same input 

string XYY = XY1Y2

A → A1 Y { A.a = g(A1.a, Y.y) }

A → X { A.a = f(X.x) }
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R3.s = R3.i = g(g(f(X.x), Y1.y), Y2.y)Y2

Y1

X

R2.s = R3.s = g(g(f(X.x), Y1.y), Y2.y)

R1.s = R2.s = g(g(f(X.x), Y1.y), Y2.y)

A.a = R1.s = g(g(f(X.x), Y1.y), Y2.y)



2. Flow of synthesized attribute values

A  X R

 X Y1 R

 X Y1 Y2 R

 X Y1 Y2

A → X R

R → Y R

R → 

A → X { R.i = f(X.x) } R { A.a = R.s }

R → Y { R1.i = g(R.i, Y.y) } R1 { R.s = R1.s } 

R →  { R.s = R.i }

A → A1 Y { A.a = g(A1.a, Y.y) }

A → X { A.a = f(X.x) }



SDT's for L-Attributed Definitions

• Assume that the underlying grammar can be parsed 

top-down

• The rules for turning an L-attributed SDD into an SDT 

are as follows

1. Embed the action that computes the inherited attributes for 

a nonterminal A immediately before that occurrence of A 

in the body of the production. If several inherited attributes 

for A depend on one another in an acyclic fashion, order 

the evaluation of attributes so that those needed first are 

computed first.

2. Place the actions that compute a synthesized attribute for 

the head of a production at the end of the body of that 

production.
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