
CS 4300: Compiler Theory

Chapter 4
Syntax Analysis

Dr. Xuejun Liang

Outlines (Sections)

1. Introduction

2. Context-Free Grammars

3. Writing a Grammar

4. Top-Down Parsing

5. Bottom-Up Parsing

6. Introduction to LR Parsing: Simple LR

7. More Powerful LR Parsers

8. Using Ambiguous Grammars

9. Parser Generators

2

Quick Review of Last Lecture

• LR Parsing
• Model of an LR Parser
• LR Parsing Driver
• Example LR(0) Parsing Table

• SLR: Simple extension of LR(0) shift-reduce parsing
• Reduction A → 𝛼 on symbols in FOLLOW(A)
• SLR Parsing
• Construct SLR Parsing Table
• Moves of an SLR parser on input using SLR Parsing Table

4

SLR, Ambiguity, and Conflicts

• SLR grammars are unambiguous

• But not every unambiguous grammar is SLR

• Consider for example the unambiguous grammar
1. S → L = R 2. S → R
3. L → * R 4. L → id
5. R → L

I0:

S’→ •S

S → •L=R

S → •R

L → •*R

L → •id

R → •L

I1:

S’→ S•

I2:

S → L•=R

R → L•

I3:

S → R•

I4:

L → *•R

R → •L

L → •*R

L → •id

I5:

L → id•

I6:

S → L=•R

R → •L

L → •*R

L → •id

I7:

L → *R•

I8:

R → L•

I9:

S → L=R•
action[2,=]=s6

action[2,=]=r5

no Conflict: has no SLR

parsing table!

Viable Prefixes

• During the LR parsing, the stack contents must be a
prefix of a right-sentential form
• If the stack holds , the rest of input is x

• There is a right-most derivation S x

• But, not all prefixes of right-sentential forms can
appear on the stack
• The parser must not shift past the handle

• Example: Suppose ,

the stack must not hold (E), as (E) is a handle.

• The prefixes of right sentential forms that can appear on
the stack of a shift-reduce parser are called viable prefixes

5

Viable Prefixes (Cont.)

• A viable prefix is a prefix of a right-sentential form that
does not continue past the right end of the leftmost
handle of that sentential form

• We say item A →1•2 is valid for a viable prefix 1 if

there is a derivation S’ Aw 1•2 w.

• A →1•2 is valid for 1 and 1 is on the parsing
stack
• If 2  , then shift

• 2 = , then reduce

6

Viable Prefixes (Cont.)

• The set of valid items for a viable prefix  is exactly the
set of items reached from the initial state along the path
labeled  in the LR(0) automaton for the grammar

• Example: See state 7 of automaton on next slide.

T → T•F, F → •(E), and F → •id are valid items

for viable prefix E+T

7

8

LR(0)

Automaton

for expression

Grammar:

E → E + T | T

T → T * F | F

F → (E)

F → id

T → T•F,
F → •(E), and
F → •id
are valid items for
viable prefix
E+T

9

7. LR(1) Grammars

• SLR too simple

• LR(1) parsing uses lookahead to avoid unnecessary
conflicts in parsing table

• LR(1) item = LR(0) item + lookahead

LR(0) item:

[A→•]

LR(1) item:

[A→•, a]

10

I2:

S → L•=R

R → L•

action[2,=]=s6

Should not reduce on =, because no

right-sentential form begins with R=

split

R → L•S → L•=R

SLR Versus LR(1)

• Split the SLR states by
adding LR(1) lookahead

• Unambiguous grammar
1. S → L = R
2. S → R
3. L → * R
4. L → id
5. R → L

lookahead=$

action[2,$]=r5

11

LR(1) Items

• An LR(1) item
[A→•, a]

contains a lookahead terminal a, meaning 
already on top of the stack, expect to parse a

• For items of the form
[A→•, a]

the lookahead a is used to reduce A→ only if the
next lookahead of the input is a

• For items of the form
[A→•, a]

with  the lookahead has no effect

12

The Closure Operation for
LR(1) Items

1. Start with closure(I) = I

2. If [A→•B, a]  closure(I) then for each
production B→ in the grammar and each
terminal b  FIRST(a), add the item [B→•, b]
to closure(I) if not already in closure(I)

3. Repeat 2 until no new items can be added

13

The Goto Operation for LR(1) Items

1. For each item [A→•X, a]  I, add the set of
items closure({[A→X•, a]}) to goto(I,X) if not
already there

2. Repeat step 1 until no more items can be added
to goto(I,X)

14

Constructing the set of LR(1) Items of
a Grammar

1. Augment the grammar with a new start symbol
S’ and production S’ → S

2. Initially, set C = { closure({[S’→•S, $]}) }
(this is the start state of the DFA)

3. For each set of items I  C and each grammar
symbol X  (NT) such that goto(I,X)  C and
goto(I,X)  , add the set of items goto(I,X) to C

4. Repeat 3 until no more sets can be added to C

15

Example Grammar and LR(1) Items

• Augmented LR(1) grammar (4.55):
S’ → S
S → C C
C → c C | d

• LR(1) items

16

goto(I0, S) = I1

goto(I0, C) = I2

goto(I0, c) = I3

goto(I0, d) = I4

goto(I2, C) = I5

goto(I2, c) = I6

goto(I2, d) = I7

goto(I3, C) = I8

goto(I3, c) = I3

goto(I3, d) = I4

goto(I6, C) = I9

goto(I6, c) = I6

goto(I6, d) = I7

LR(1) items and goto Operation for Grammar (4.55)

S’ → S
S → C C
C → c C | d

17

The GOTO Graph

for grammar (4.55)

18

Example Grammar and LR(1) Items

• Unambiguous LR(1) grammar:
S → L = R
S → R
L → * R
L → id
R → L

• Augment with S’ → S

• LR(1) items (next slide)

19

[S’→ •S, $] goto(I0,S)=I1

[S → •L=R, $] goto(I0,L)=I2

[S → •R, $] goto(I0,R)=I3

[L → •*R, =] goto(I0,*)=I4

[L → •id, =] goto(I0,id)=I5

[R → •L, $]

[S’→ S•, $]

[S → L•=R, $] goto(I2,=)=I6

[R → L•, $]

[S → R•, $]

[L → *•R, =] goto(I4,R)=I7

[R → •L, =] goto(I4,L)=I8

[L → •*R, =] goto(I4,*)=I4

[L → •id, =] goto(I4,id)=I5

[L → id•, =]

I0:

I1:

I2:

I3:

I4:

I5:

[S → L=•R, $] goto(I6,R)=I9

[R → •L, $] goto(I6,L)=I10

[L → •*R, $] goto(I6,*)=I11

[L → •id, $] goto(I6,id)=I12

[L → *R•, =]

[R → L•, =]

[S → L=R•, $]

[R → L•, $]

[L → *•R, $] goto(I11,R)=I13

[R → •L, $] goto(I11,L)=I10

[L → •*R, $] goto(I11,*)=I11

[L → •id, $] goto(I11,id)=I12

[L → id•, $]

[L → *R•, $]

I6:

I7:

I8:

I9:

I10:

I12:

I11:

I13:

Grammar
S → L = R
S → R
L → * R
L → id
R → L

The GOTO
Graph for
Grammar
S → L = R
S → R
L → * R
L → id
R → L

21

Constructing Canonical LR(1) Parsing
Tables

1. Augment the grammar with S’→S

2. Construct the set C={I0,I1,…,In} of LR(1) items

3. If [A→•a, b]  Ii and goto(Ii,a)=Ij then set
action[i,a]=shift j

4. If [A→•, a]  Ii then set action[i,a]=reduce A→
(apply only if AS’)

5. If [S’→S•, $] is in Ii then set action[i,$]=accept

6. If goto(Ii,A)=Ij then set goto[i,A]=j

7. Repeat 3-6 until no more entries added

8. The initial state i is the Ii holding item [S’→•S,$]

22

Example Canonical LR(1) Parsing Table
Grammar:

0. S’→ S

1. S → C C

2. C → c C

3. C → d

23

Example LR(1)
Parsing Table s5 s4

acc

s6 r6

r3

s5 s4

r5 r5

s12 s11

r4 r4

r6 r6

r2

r6

s12 s11

r5

r4

id * = $

0

1

2

3

4

5

6

7

8

9

10

11

12

13

S L R

1 2 3

8 7

10 9

10 13

Grammar:

1. S’→ S

2. S → L = R

3. S → R

4. L → * R

5. L → id

6. R → L

24

LALR Parsing

• LR(1) parsing tables have many states

• LALR parsing (Look-Ahead LR) merges two or more
LR(1) state into one state to reduce table size

• Less powerful than LR(1)
• Will not introduce shift-reduce conflicts, because shifts

do not use lookaheads

• May introduce reduce-reduce conflicts, but seldom do
so for grammars of programming languages

