
CS 4300: Compiler Theory

Chapter 4
Syntax Analysis

Dr. Xuejun Liang

Quick Review of Last Lecture

• Design of a Lexical-Analyzer Generator
• Construct and simulate an NFA from a Lex Program
• Convert the NFA to a DFA and simulate the DFA

• From RE to DFA Directly
• Simulate a DFA that recognizes L(r) given a regular

expression r.
• (Annotated) Syntax Tree of a regular expression
• nullable(n)
• firstpos(n)
• lastpos(n)
• followpos(p)
• Algorithm: Construct Dstates, and Dtran

Outlines (Sections)

1. Introduction

2. Context-Free Grammars

3. Writing a Grammar

4. Top-Down Parsing

5. Bottom-Up Parsing

6. Introduction to LR Parsing: Simple LR

7. More Powerful LR Parsers

8. Using Ambiguous Grammars

9. Parser Generators

3

1. The role of the Parser

• A parser implements a Context-Free grammar as a
recognizer of strings

• The role of the parser in a compiler is twofold:
• To check syntax (= string recognizer)

• And to report syntax errors accurately

• To invoke semantic actions
• For static semantics checking, e.g. type checking of

expressions, functions, etc.

• For syntax-directed translation of the source code to an
intermediate representation

4

Position of Parser in Compiler Model

5

Lexical error Syntax error

Semantic error

6

Error Handling

• A good compiler should be able to identify and locate
errors and able to recover from errors

• Common programming errors can occur at many different
levels
• Lexical errors: important, compiler can easily recover and

continue

• Syntax errors: most important for compiler, can almost
always recover

• Static semantic errors: important, can sometimes recover

• Dynamic semantic errors: hard or impossible to detect at
compile time, runtime checks are required

• Logical errors: hard or impossible to detect

7

Viable-Prefix Property

• The viable-prefix property of parsers allows early
detection of syntax errors
• Goal: detection of an error as soon as possible without

further consuming unnecessary input

• How: detect an error as soon as the prefix of the input
does not match a prefix of any string in the language

…

for (;)

…

Error is

detected here
Prefix

8

Error Recovery Strategies

• Panic mode
• Discard input until a token in a set of designated

synchronizing tokens (such as ;) is found.

• Phrase-level recovery
• Perform local correction on the input to repair the error

• Error productions
• Augment grammar with productions for erroneous

constructs

• Global correction
• Choose a minimal sequence of changes to obtain a

global least-cost correction

Representative Grammars (Expression)

9

LR grammar

• Suitable for bottom-up parsing.

• Not suitable for top-down

parsing

• Because it is left recursive

LL grammar

• Non-left-recursive

• Suitable for top-down

parsing

Ambiguous Grammar

10

2. Context-Free Grammars (Recap)

• Context-free grammar is a 4-tuple
G = (N, T, P, S) where
• T is a finite set of tokens (terminal symbols)

• N is a finite set of nonterminals

• P is a finite set of productions of the form
→ 

where   (NT)* N (NT)* and   (NT)*

• S  N is a designated start symbol

11

Notational Conventions

• Terminals
a,b,c,…  T
specific terminals: 0, 1, id, +

• Nonterminals
A,B,C,…  N
specific nonterminals: expr, term, stmt

• Grammar symbols
X,Y,Z  (NT)

• Strings of terminals
u,v,w,x,y,z T*

• Strings of grammar symbols
,,  (NT)*

12

Derivations (Recap)

• The one-step derivation is defined by
 A    

where A →  is a production in the grammar

• In addition, we define
•  is leftmostlm if  does not contain a nonterminal

•  is rightmostrm if  does not contain a nonterminal

• Transitive closure * (zero or more steps)

• Positive closure + (one or more steps)

• The language generated by G is defined by
L(G) = {w  T* | S + w}

13

Derivation (Example)

Grammar G = ({E}, {+, *, (,), -, id}, P, E) with

productions P =

E → E + E | E * E | (E) | - E | id

E  - E  - id

E * E

E + id * id + id

E rm E + E rm E + id rm id + id

Example derivations:

E * id + id

14

Language Classification

• A grammar G is said to be
• Regular if it is right linear where each production is of

the form
A → w B or A → w

or left linear where each production is of the form
A → B w or A → w

• Context free if each production is of the form
A →

where A  N and   (NT)*

• Context sensitive if each production is of the form
 A →   

where A  N, ,,  (NT)*, || > 0

• Unrestricted

15

Chomsky Hierarchy

L(regular)  L(context free) 

L(context sensitive)  L(unrestricted)

Where L(T) = { L(G) | G is of type T }

That is: the set of all languages

generated by grammars G of type T

L1 = { anbn | n  1 } is context free, but not regular

L2 = { wcw | w is in L(a|b)*} is context sensitive

Every finite language is regular!

(construct a FSA for strings in L(G))
Examples:

L3 = { anbmcndm | n  1 } is context sensitive

3. Lexical Versus Syntactic Analysis

• Why use regular expressions to define the lexical
syntax of a language?
• Quite simple, more concise and easier-to-understand

• More efficient lexical analyzers can be constructed
automatically from regular expressions

• Regular expressions are most useful for describing the
structure of constructs such as identifiers, constants,
keywords, and white space.

• Grammars are most useful for describing nested
structures such as balanced parentheses, matching
begin-end's, corresponding if-then-else's, and so on.

16

Eliminating Ambiguity (1)

Ambiguous grammar:

"dangling else"

if E1 then if E2 then S1 else S2

(1)

(2)

Eliminating Ambiguity (2)

18

Ambiguous grammar: "dangling else"

Unambiguous grammar for if-then-else statements

Eliminating Ambiguity (3)

19

Unambiguous grammar for if-then-else statements

if E1 then if E2 then S1 else S2

Stmt => open_stmt => if expr then stmt => if expr then matched_stmt

=> if expr then if expr then matched_stmt else matched _stmt

=>* if E1 then if E2 then S1 else S2

20

• A grammar is left recursive if it has a nonterminal
A such that there is a derivation A A  for some
string .

• When a grammar is left recursive then a predictive
parser loops forever on certain inputs.

• Immediate left recursion, where there is a
production of the form A → A .

Left Recursion

A →  R

|  R

R →  R

| 

A → A 

| 

| 

21

Algorithm to eliminate left recursion

Input: Grammar G with no cycles or -productions

Arrange the nonterminals in some order A1, A2, …, An

for i = 1, …, n {

for j = 1, …, i-1 {

replace each

Ai → Aj 

with

Ai → 1  | 2  | … | k 

where

Aj → 1 | 2 | … | k

}

eliminate the immediate left recursion in Ai

}

