CS 4300: Compiler Theory

Chapter 4
Syntax Analysis

Dr. Xuejun Liang

Quick Review of Last Lecture

* Design of a Lexical-Analyzer Generator
* Construct and simulate an NFA from a Lex Program
* Convert the NFA to a DFA and simulate the DFA

* From RE to DFA Directly
e Simulate a DFA that recognizes L(r) given a regular

expression r.

(Annotated) Syntax Tree of a regular expression
nullable(n)

firstpos(n)

lastpos(n)

followpos(p)

Algorithm: Construct Dstates, and Dtran

Outlines (Sections)

Introduction

Context-Free Grammars

Writing a Grammar

Top-Down Parsing

Bottom-Up Parsing

Introduction to LR Parsing: Simple LR
More Powerful LR Parsers

Using Ambiguous Grammars

O 0 N O U A WDNhPRE

Parser Generators

1. The role of the Parser

* A parser implements a Context-Free grammar as a
recognizer of strings

* The role of the parser in a compiler is twofold:

* To check syntax (= string recognizer)
* And to report syntax errors accurately
* To invoke semantic actions

* For static semantics checking, e.g. type checking of
expressions, functions, etc.

* For syntax-directed translation of the source code to an
intermediate representation

Position of Parser in Compiler Model

source | Lexical

program | Analyzer

token
|l

]

get next

|

|
Parser IL

|

|

|

Lexical error

token

Symbol
Table

tree

' Rest of
-

| Front End

intermediate
—

y

representation

Syntax error
Semantic error

Error Handling

* A good compiler should be able to identify and locate
errors and able to recover from errors

e Common programming errors can occur at many different
levels

Lexical errors: important, compiler can easily recover and
continue

Syntax errors: most important for compiler, can almost
always recover

Static semantic errors: important, can sometimes recover

Dynamic semantic errors: hard or impossible to detect at
compile time, runtime checks are required

Logical errors: hard or impossible to detect

Viable-Prefix Property

* The viable-prefix property of parsers allows early
detection of syntax errors

* Goal: detection of an error as soon as possible without
further consuming unnecessary input

 How: detect an error as soon as the prefix of the input
does not match a prefix of any string in the language

Error 1s

detected here

Error Recovery Strategies

* Panic mode

* Discard input until a token in a set of designated
synchronizing tokens (such as ;) is found.

* Phrase-level recovery
* Perform local correction on the input to repair the error

* Error productions

* Augment grammar with productions for erroneous
constructs

e Global correction

* Choose a minimal sequence of changes to obtain a
global least-cost correction

Representative Grammars (Expression)

LR grammar LL grammar
 Suitable for bottom-up parsing. * Non-left-recursive
 Not suitable for top-down Suitable for top-down

parsing parsing
* Because it 1s left recursive
E — TE
E - E+T|T ' =+ +TE'| €
T - T+F|F L
, : * I €
F - (FE) | id F o (E)|id

Ambiguous Grammar
E - E+E|E+E | (E)]|id

2. Context-Free Grammars (Recap)

* Context-free grammar is a 4-tuple
G=(N,T,P,S)where
e Tis afinite set of tokens (terminal symbols)
* Nis a finite set of nonterminals
* Pis a finite set of productions of the form
o—
where o € (NUT)* N (NUT)* and B € (NUT)*
* S e Nis adesignated start symbol

10

Notational Conventions

 Terminals
ab,c..cT
specific terminals: 0, 1, id, +

* Nonterminals
ABC,.. <N
specific nonterminals: expr, term, stmt

e Grammar symbols
XY.Z € (NUT)

e Strings of terminals
uv,wxyze T*

 Strings of grammar symbols
o,B,y € (NUT)*

11

Derivations (Recap)

* The one-step derivation is defined by
aAB=ayp
where A — v is a production in the grammar

* |n addition, we define
* = is leftmost =, if o does not contain a nonterminal
* = is rightmost =, if B does not contain a nonterminal
* Transitive closure =" (zero or more steps)
* Positive closure =* (one or more steps)

* The language generated by G is defined by
L(G)={weT*|S="w}

12

Derivation (Example)

Grammar G = ({£}, {+, %, (,), -, id}, P, E) with
productions P =
EFE—>FE+E|E*E|(E)| -FE|id

Example derivations:
EFE=-FE=-id

F=, E+EFE=_FEF+id=, id+id
E="E

E="id +id

E="id *id +id

13

Language Classification

* Agrammar G is said to be

* Reqular if it is right linear where each production is of
the form
A—>waB or A—>w
or left linear where each production is of the form
A—>Bw or A—>w

* Context free if each production is of the form
A—a
where A € Nand a € (NUT)*

* Context sensitive if each production is of the form
aAB—>ayp
where A € N, o7, € (NUT)*, |y]| >0

e Unrestricted

14

Chomsky Hierarchy

Examples:

L(regular) c L(context free) C
L(context sensitive) C L(unrestricted)

Where IL(7) = { L(G) | G1s of type T }
That 1s: the set of all languages
generated by grammars G of type T’

Every finite language is regular!
(construct a FSA for strings in L(G))

L,=1{a"®"|n>1} 1s context free, but not regular
L,={wew | wisin L(alb)*} is context sensitive

Ly={a"b™c"d™ | n =1} 1s context sensitive
15

3. Lexical Versus Syntactic Analysis

* Why use regular expressions to define the lexical
syntax of a language?
e Quite simple, more concise and easier-to-understand

* More efficient lexical analyzers can be constructed
automatically from regular expressions

* Regular expressions are most useful for describing the
structure of constructs such as identifiers, constants,
keywords, and white space.

 Grammars are most useful for describing nested
structures such as balanced parentheses, matching
begin-end's, corresponding if-then-else's, and so on.

16

Eliminating Ambiguity (1)

- stmt — if expr then stmt
Ambiguous grammar: ?)
= & | if expr then stmt else stmt

"dangling else" | other

if E1 then if E2 then S1 else S2

stmi

//\\\

if expr then stmt else stmi

E, // \\ S
//stmt\\ if exTprT then stmt
ezpr then stmi E, S1
E // \\\\ (2)
1 if eTpr then stmt else stmt

E, S1 Sa

(1)

Eliminating Ambiguity (2)

Ambiguous grammar: "dangling else"

stmi

—r

if expr then stmt
if expr then stmt else stmt
other

Unambiguous grammar for 1f-then-else statements

stmt

matched_stmt

open_stmit

—

._}.

—

matched_stmt

open_stmt
if expr then matched_stmt else matched_stmt

other
if expr then stmt
if expr then matched_stmt else open_stmt

18

Eliminating Ambiguity (3)

if E1 then if E2 then S1 else S2

Stmt => open_stmt => if expr then stmt => if expr then matched stmt

=> if expr then if expr then matched stmt else matched _stmt

=>* {f E1 then if E2 then S1 else S2

Unambiguous grammar for 1f-then-else statements

stmi

matched_stmt

open_stmit

—

_}

—

matched _stmt

open_stmt

if expr then matched_stmt else matched_stmt
other

if expr then stmt

if expr then matched_stmt else open_stmt

19

Left Recursion

* A grammar is left recursive if it has a nonterminal
A such that there is a derivation A =, A o for some
string o.

* When a grammar is left recursive then a predictive
parser loops forever on certain inputs.

 Immediate left recursion, where there is a
production of the form A — A «.

A 4o A—>BR

| B —> | YR
[y R—>aR

| €
20

Algorithm to eliminate left recursion

Input: Grammar G with no cycles or e-productions

Arrange the nonterminals in some order 4, 4,, ..., 4
fori=1,...,n{
forj=1,...,i-1{
replace each
A;—> Ay
with
A; >0y [0 7| ... | Oy
where
A;—> 01 [0, ... |0

n

h

eliminate the immediate left recursion 1n A,

21

