CS 4300: Compiler Theory

Chapter 3 Lexical Analysis

Dr. Xuejun Liang

Outlines (Sections)

- 1. The Role of the Lexical Analyzer
- Input Buffering (Omit)
- 3. Specification of Tokens
- 4. Recognition of Tokens
- 5. The Lexical -Analyzer Generator Lex
- 6. Finite Automata
- 7. From Regular Expressions to Automata
- 8. Design of a Lexical-Analyzer Generator
- 9. Optimization of DFA-Based Pattern Matchers*

Quick Review of Last Lecture

From Regular Expressions to Automata

- Conversion of an NFA into a DFA
 - Subset construction algorithm
 - Initial ε -closure, then move and ε -closure
 - Subset Construction Examples
 - Simulating an NFA Using ε-closure and move
- From Regular Expression to NFA
 - Thompson's Construction algorithm
 - Thompson's Construction Example

8. Design of a Lexical-Analyzer Generator Construct an NFA from a Lex Program

Lex specification with regular expressions

DFA

Combining the NFAs of a Set of Regular Expressions

Simulating the Combined NFA Example 1

Simulating the Combined NFA Example 2

When two or more accepting states are reached, the first action given in the Lex specification is executed

DFA's for Lexical Analyzers

9. From RE to DFA Directly

- The "important states" of an NFA are those without an ε -transition, that is if $move(\{s\},a) \neq \emptyset$ for some a then s is an important state
- The subset construction algorithm uses only the important states when it determines ε-closure(move(T,a))

NFA Constructed for (a | b)*abb#

Note:

- 1. The NFA is constructed by Thompson's Algorithm
- 2. The important states in the NFA are numbered

Algorithm:

INPUT: A regular expression r.
OUTPUT: A DFA D that recognizes L(r).

1. Augment the regular expression r with a special end symbol # to make accepting states important: the new expression is r#

- 2. Construct a syntax tree T from *r*#
- 3. Traverse the tree to construct functions *nullable*, *firstpos*, *lastpos*, and *followpos*
- 4. Construct *Dstates*, the set of states of DFA D, and *Dtran*, the transition function for D.
- 5. The start state of D is $firstpos(n_0)$, where node n_0 is the root of T. The accepting states are those containing the position for the end marker symbol #.

Syntax Tree of (a | b)*abb#

Functions Computed from the Syntax Tree

- nullable(n): is true for a syntax-tree node n if and only if the subexpression represented by n has ε in its language.
- *firstpos*(*n*): set of positions that can match the first symbol of a string generated by the subexpression represented by node *n*
- *lastpos*(*n*): the set of positions that can match the last symbol of a string generated by the subexpression represented by node *n*
- followpos(p): the set of positions that can follow position p in the syntax-tree

Functions Computed from the Syntax Tree (cont.)

Node n	nullable(n)	firstpos(n)	lastpos(n)
Leaf ε	true	Ø	Ø
Leaf i	false	$\{i\}$	$\{i\}$
$egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	$nullable(c_1)$ or $nullable(c_2)$	$firstpos(c_1)$ \cup $firstpos(c_2)$	$lastpos(c_1)$ \cup $lastpos(c_2)$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$nullable(c_1) \ ext{and} \ nullable(c_2)$	if $nullable(c_1)$ then $firstpos(c_1) \cup firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1) \cup lastpos(c_2)$ else $lastpos(c_2)$
*	true	$firstpos(c_1)$	$lastpos(c_1)$

Annotated Syntax Tree of (a | b)*abb#

Algorithm: followpos

```
Initially, all followpos(i) = \Phi
for each node n in the tree {
    if n is a cat-node with left child c_1 and right child c_2
        for each i in lastpos(c_1) {
           followpos(i) := followpos(i) \cup firstpos(c_2)
    else if n is a star-node
        for each i in lastpos(n) {
           followpos(i) := followpos(i) \cup firstpos(n)
```

followpos: Example

Node	followpos	
1(a)	{1, 2, 3}	$\{1,2,3\} \bullet \{6\}$
2(b)	{1, 2, 3}	(1,2,2), (7)
3(a)	{4}	$\{1, 2, 3\} \bullet \{5\} $ $\{6\} $ $ \{6\} $ $ \{6\} $ $ \{6\} $
4(b)	{5}	$\{1, 2, 3\} \bullet \{4\} $ $\{5\} \mathbf{b} \{5\}$
5(b)	{6}	5
6(#)	-	$\{1, 2, 3\} \bullet \{3\} \qquad \{4\} \mathbf{b} \{4\}$
		$\{1,2\}$ $\{1,2\}$ $\{3\}$ a $\{3\}$ $\{3\}$ $\{3\}$ $\{3\}$ $\{3\}$
		$\{1,2\}$ $\{1,2\}$ nullable
	{1} a	{1} {2} b {2}

Algorithm: Construct Dstates, and Dtran

```
s_0 = firstpos(n_0) where n_0 is the root of the syntax tree
Dstates := \{s_0\} and s_0 is unmarked
while (there is an unmarked state S in Dstates) {
    mark S;
    for each input symbol a \in \Sigma {
        let U be the union of followpos(p) for all p
            in S that correspond to a;
        if (U not in Dstates )
            add U as an unmarked state to Dstates
        Dtran[S,a] = U
```

From RE to DFA Directly: Example (1)

From RE to DFA Directly: Example (2)

Node	followpos
1(a)	{1, 2, 3}
2(b)	{1, 2, 3}
3(a)	{4}
4(b)	{5}
5(b)	{6}
6(#)	-

$$Dtran[\{1,2,3\}, a]$$

= $followpos(1) \cup followpos(3)$
= $\{1, 2, 3, 4\} = S_1$

$$Dtran[\{1,2,3\}, b]$$

= $followpos(2)$
= $\{1, 2, 3\}$

From RE to DFA Directly: Example (3)

Node	followpos
1(a)	{1, 2, 3}
2(b)	{1, 2, 3}
3(a)	{4}
4(b)	{5}
5(b)	{6}
6(#)	-

$$Dtran[\{1,2,3,4\}, a]$$

= $followpos(1) \cup followpos(3)$
= $\{1, 2, 3, 4\}$

$$Dtran[\{1,2,3,4\}, b]$$

= $followpos(2) \cup followpos(4)$
= $\{1, 2, 3, 5\} = S_2$

From RE to DFA Directly: Example (4)

Node	followpos
1(a)	{1, 2, 3}
2(b)	{1, 2, 3}
3(a)	{4}
4(b)	{5}
5(b)	{6}
6(#)	_

$$Dtran[\{1,2,3,5\}, a]$$

= $followpos(1) \cup followpos(3)$
= $\{1, 2, 3, 4\}$

$$Dtran[\{1,2,3,5\}, b]$$

= $followpos(2) \cup followpos(5)$
= $\{1, 2, 3, 6\} = S_3$

From RE to DFA Directly: Example (5)

Node	followpos
1(a)	{1, 2, 3}
2(b)	{1, 2, 3}
3(a)	{4}
4(b)	{5}
5(b)	{6}
6(#)	-

$$Dtran[\{1,2,3,6\}, a]$$

= $followpos(1) \cup followpos(3)$
= $\{1, 2, 3, 4\}$

$$Dtran[\{1,2,3,6\}, b]$$

= $followpos(2)$
= $\{1, 2, 3\}$

