CS 4300: Compiler Theory

Chapter 3
Lexical Analysis

Dr. Xuejun Liang

Outlines (Sections)

The Role of the Lexical Analyzer

Input Buffering (Omit)

Specification of Tokens

Recognition of Tokens

The Lexical -Analyzer Generator Lex

Finite Automata

From Regular Expressions to Automata

Design of a Lexical-Analyzer Generator
Optimization of DFA-Based Pattern Matchers*

O 0 N O U A WDNhPRE

Quick Review of Last Lecture

From Regular Expressions to Automata
* Conversion of an NFA into a DFA

* Subset construction algorithm

 |nitial e-closure, then move and g-closure
e Subset Construction Examples
e Simulating an NFA Using e-closure and move

* From Regular Expression to NFA
* Thompson’s Construction algorithm
* Thompson’s Construction Example

8. Design of a Lexical-Analyzer Generator
Construct an NFA from a Lex Program

Lex specification with NFA
regular expressions

D { action, § action,
Py action, ‘ M

start
action,

pn { action } \

Q action,,

l Subset construction

Combining the NFAs of a Set of
Regular Expressions

start ‘ a C
a { action, } o . .
abb { action, } ‘ —Q——0——0——0
a b

a*b+ {action, }
start
56/ b aé

Simulating the Combined NFA
Example 1

a .
== action,

start / a b b
a b
NS
5 action,

> > > a > none
action,

action,

Must find the longest match:
Continue until no further moves are possible
When last state 1s accepting: execute action

N | W [—= O

Simulating the Combined NFA
Example 2

tart /

a .
1= action,

b

a b
a b
NS
5 action,

action,

N | W [= O

b b a
> 5 > p > none
action,
8 8 action,

When two or more accepting states are reached, the
first action given in the Lex specification is executed

DFA's for Lexical Analyzers
-0 NFA

start /

@-< a.b.b@ Subset
>‘a b l

construction
NOE
5 DFA

9. From RE to DFA Directly

* The “important states "of an NFA are those without
an g-transition, that is if move({s},a) # @ for some a
then s is an important state

* The subset construction algorithm uses only the
important states when it determines
e-closure(move(Ta))

NFA Constructed for (a|b)*abb#

Note:
1. The NFA 1s constructed by Thompson’s Algorithm
2. The important states in the NFA are numbered

10

A|g orit h Mm: INPUT : A regular expression r.
OUTPUT: A DFA D that recognizes L(r) .

1. Augment the regular expression r with a special end
symbol # to make accepting states important: the new
expression is r#

Construct a syntax tree T from r#

3. Traverse the tree to construct functions nullable, firstpos,
lastpos, and followpos

4. Construct Dstates, the set of states of DFA D, and Dtran,
the transition function for D.

5. The start state of D is firstpos(n,), where node n, is the
root of T. The accepting states are those containing the
position for the end marker symbol #.

11

Syntax Tree of (a|b)*abb#

concatenation —> @
/ \‘\> ./ \ "

closure

alternation

position

number
(for leafs #¢)

12

Functions Computed from the Syntax Tree

* nullable(n): is true for a syntax-tree node n if and only

if the subexpression represented by n has € in its
language.

e firstpos(n): set of positions that can match the first
symbol of a string generated by the subexpression
represented by node n

* lastpos(n): the set of positions that can match the last

symbol of a string generated by the subexpression
represented by node n

* followpos(p): the set of positions that can follow
position p in the syntax-tree

13

Functions Computed from the Syntax Tree

(cont.)
Node n nullable(n) firstpos(n) lastpos(n)
Leaf ¢ true %) %
Leaf i false {i} {i}
| nullable(c,) firstpos(c,) lastpos(c)
/ A\ or U U
C C, nullable(c,) firstpos(c,) lastpos(c,)
. nullable(c,) if nullable(c,) then | if nullable(c,) then
/A and firstpos(c;) YU lastpos(c,) U
C C nullable(c,) firstpos(c,) lasipos(cy)
: 2 2 else firstpos(c,) else lastpos(c,)
%
| true firstpos(c,) lastpos(c,)
C

14

Annotated Syntax Tree of (a|b)*abb#

Compute for each node

nullable
firstpos

lastpos

a on
~— ~—
(e@) (ep)
~— —— -
N gl N
——
@ Q
~— ~= ~= ~—
o @\ (Q\ @\
« - - -
o\ — —
- —— -~
p— 0--0‘
‘Hf.) ~—
@\ @\
- - ~=
— — —
- —— ——
a —
~—
—
——

nullable

15

Algorithm: followpos

Initially, all followpos(i) = ®
for each node » 1n the tree §
if 1s a cat-node with left child ¢, and right child ¢,
for each i in lastpos(c,) { o
followpos(i) := followpos(i) U firstpos(c,) /o
} C1 C,
else if n 1s a star-node
for each i in lastpos(n) {
followpos(i) := followpos(i) U firstpos(n)
h

16

followpos: Example

Node | followpos

1(a) | {1,2,3} {1,2,3} @ {6}

20 | {1,2,3] N

3(a) {4 ” A 6 A
4(b)) {1,2,3 0{4/} 51b (5

5(b) {6} yd 5

6(#)] {1,2,3} @ {3} {4}13{4}

17

Algorithm: Construct Dstates, and Dtran

s, = firstpos(n,) where n, 1s the root of the syntax tree

Dstates := {s,} and s,1s unmarked

while (there 1s an unmarked state S in Dstates) {
mark S;

for each input symbol @ € 2. §
let U be the union of followpos(p) for all p
in S that correspond to a;
if (U not 1in Dstates)
add U as an unmarked state to Dstates
Dtran|S,a] = U

18

From RE to DFA Directly: Example (1)

Sy = firstpos(n,) {1,2,3} @ {6}

={1,2,3} / \

lastpos

start

19

From RE to DFA Directly: Example (2)

Node followpos Dtran[{1,2,3}, a]

1(a) {1,2,3) = followpos(1) U followpos(3)
2) | {1,2,3} ~L23. 475

3@)) Dtran[{1,2,3}, b]

4(b)) = followpos(2)

5(b) {6} ={1, 2, 3}

6(#)

start

From RE to DFA Directly: Example (3)

Dtran[{1,2,3,4}, a]
= followpos(1) U followpos(3)
={1, 2, 3, 4}

Node followpos
1(a) {1, 2, 3}
2(b) {1, 2, 3}
3(a) 14}
4(b) {5}
5(b)

6(#)

16}

Dtran[{1,2,3,4}, b]
= followpos(2) U followpos(4)
={1,2,3,5} =5,

start

21

From RE to DFA Directly: Example (4)

Dtran[{1,2,3,5}, a]
= followpos(1) U followpos(3)
={1,2,3,4}

Node followpos
1(a) {1, 2,3}
2(b) {1,2,3}
3(a) 14}
4(b) {5}
5(b)

6(#)

16}

Dtran[{1,2,3,5}, b]
= followpos(2) L followpos(3)
:{19 29 39 6} - S3

start

22

From RE to DFA Directly: Example (5)

Dtran[{1,2,3,6}, a]
= followpos(1) U followpos(3)
={1, 2, 3, 4}

Node followpos
1(a) {1, 2, 3}
2(b) {1, 2, 3}
3(a) 14}
4(b) {5}
5(b)

6(#)

16}

Dtran[{1,2,3,6}, b]
= followpos(2)
={1, 2, 3}

start

23

