CS 4300: Compiler Theory

Chapter 3 Lexical Analysis

Dr. Xuejun Liang

Outlines (Sections)

- 1. The Role of the Lexical Analyzer
- Input Buffering (Omit)
- 3. Specification of Tokens
- 4. Recognition of Tokens
- 5. The Lexical -Analyzer Generator Lex
- 6. Finite Automata
- 7. From Regular Expressions to Automata
- 8. Design of a Lexical-Analyzer Generator
- 9. Optimization of DFA-Based Pattern Matchers*

Quick Review of Last Lecture

- The Lexical-Analyzer Generator Lex
 - Structure of Lex Programs
 - Regular Expressions in Lex
 - Example Lex Specification
 - Conflict Resolution in Lex
- Finite Automata
 - Definitions of NFA and DFA
 - Transition Graph, Transition Table
 - The Language Defined by an NFA and DFA
 - Simulate a DFA

7. From Regular Expressions to Automata Conversion of an NFA into a DFA

- The *subset construction* algorithm converts an NFA into a DFA using:
 - ε -closure(s) = $\{s\} \cup \{t \mid s \rightarrow_{\varepsilon} \dots \rightarrow_{\varepsilon} t\}$
 - ε -closure(T) = $\bigcup_{s \in T} \varepsilon$ -closure(s)
 - $move(T, a) = \{ s \mid t \rightarrow_a s \text{ and } t \in T \}$
- The algorithm produces:
 - Dstates -- the set of states of the new DFA consisting of sets of states of the NFA
 - **Dtran** -- the transition table of the new DFA

The Subset Construction Algorithm

```
Initially, \varepsilon-closure(s_0) is the only state in Dstates
and it is unmarked
while (there is an unmarked state T in Dstates) {
    mark T
    for (each input symbol a \in \Sigma) {
        U = \varepsilon-closure(move(T,a))
        if (U is not in Dstates)
            add U as an unmarked state to Dstates
        Dtran[T,a] := U
```

Computing ε -closure(T)

```
push all states of T onto stack;
initialize \varepsilon-closure(T) to T;
while ( stack is not empty ) {
       pop t, the top element, off stack;
       for ( each state u with an edge from t to u labeled \varepsilon )
             if ( u is not in \varepsilon-closure(T) ) {
                     add u to \varepsilon-closure(T);
                     push u onto stack;
```


NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	A	\overline{B}	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

$$move(A, a) =$$

$$\varepsilon - closure(move(A, a)) =$$

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	\overline{A}	\overline{B}	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

$$move(A, b) =$$

$$\varepsilon - closure(move(A, b)) =$$

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	\overline{A}	\overline{B}	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

$$move(B, a) =$$

$$\varepsilon - closure(move(B, a)) =$$

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	A	\overline{B}	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

$$move(B, b) =$$

$$\varepsilon - closure(move(B, b)) =$$

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	\overline{A}	\overline{B}	\overline{C}
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

$$move(C, a) =$$

$$\varepsilon - closure(move(C, a)) =$$

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	A	\overline{B}	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

$$move(C, b) =$$

$$\varepsilon - closure(move(C, b)) =$$

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	\overline{A}	\overline{B}	\overline{C}
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

$$move(D, a) =$$

$$\varepsilon - closure(move(D, a)) =$$

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	A	\overline{B}	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

$$move(D, b) =$$

$$\varepsilon - closure(move(D, b)) =$$

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	\overline{A}	\overline{B}	\overline{C}
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

move(E, a) =

 $\varepsilon - closure(move(E, a)) =$

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	\overline{A}	\overline{B}	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

$$move(E,b) =$$

$$\varepsilon - closure(move(E, b)) =$$

Subset Construction Example 1 Cont.

NFA STATE	DFA STATE	\overline{a}	\overline{b}
$\{0, 1, 2, 4, 7\}$	\overline{A}	\overline{B}	\overline{C}
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

NFA State	DFA State	а	b
{0,1,3,7}	Α	В	С
{2,4,7}	В	D	Е
{8}	С	Ø	С
{7}	D	D	С
{5,8}	E	Ø	F
{6,8}	F	Ø	С

$$\epsilon$$
-closure($\{0\}$) = $\{0,1,3,7\}$ A

Move($\{0,1,3,7\}$,**a**) = $\{2,4,7\}$
 ϵ -closure($\{2,4,7\}$) = $\{2,4,7\}$ B

Move($\{2,4,7\}$,**a**) = $\{7\}$
 ϵ -closure($\{7\}$) = $\{7\}$
D

Move($\{7\}$,**b**) = $\{8\}$
 ϵ -closure($\{8\}$) = $\{8\}$
 ϵ -closure($\{8\}$) = $\{8\}$

Subset Construction Example 2 Cont.

NFA State	DFA State	а	b
{0,1,3,7}	Α	В	С
{2,4,7}	В	D	Е
{8}	С	Ø	С
{7}	D	D	С
{5,8}	E	Ø	F
{6,8}	F	Ø	С

ε-closure and move Examples

 ϵ -closure($\{0\}$) = $\{0,1,3,7\}$ A $move(\{0,1,3,7\},\mathbf{a}) = \{2,4,7\}$ ϵ -closure($\{2,4,7\}$) = $\{2,4,7\}$ B $move(\{2,4,7\},\mathbf{a}) = \{7\}$ ϵ -closure($\{7\}$) = $\{7\}$ D $move(\{7\},\mathbf{b}) = \{8\}$ ϵ -closure($\{8\}$) = $\{8\}$ C $move(\{8\},\mathbf{a}) = \emptyset$

Simulating an NFA Using ε-closure and move

```
S = \epsilon \text{-}closure(s_0);

c = nextChar();

while (c := eof) {

S = \epsilon \text{-}closure(move(S, c));

c = nextChar();

}

if (S \cap F := \emptyset) return "yes";

else return "no";
```

From Regular Expression to NFA (Thompson's Construction)

Construct an NFA for r = (a|b)*abb

