
CS 4300: Compiler Theory

Chapter 2
A Simple Syntax-Directed

Translator

Dr. Xuejun Liang

2

Outline

• This chapter is an introduction to the compiling techniques
in Chapters 3 to 6 of the Dragon book

• It illustrates the techniques by developing a working Java
program that translates representative programming
language statements into three-address code

• The major topics are
2. Syntax Definition

3. Syntax-Directed Translation

4. Parsing

5. A Translator for Simple Expressions

6. Lexical Analysis

7. Symbol Tables

8. Intermediate Code Generation

7. Symbol Tables

3

Given input :

{ int x ; char y ; { bool y ; x ; y ; } x ; y ; }

The goal is to produce output:

{ { x : int ; y : bool ; } x : int ; y : char ; }

The most- closely nested rule for blocks

an identifier x is in the scope of the most-closely nested

declaration of x; that is, the declaration of x found by

examining blocks inside-out, starting with the block in

which x appears

Symbol Table Per Scope

4

Chained symbol tables

B1

B2

Class Env implements
chained symbol tables 1/2

5

Class Env implements
chained symbol tables 2/2

6

Grammar of the input program

Given input :

{ int x ; char y ; { bool y ; x ; y ; } x ; y ; }

The goal is to produce output:

{ { x : int ; y : bool ; } x : int ; y : char ; }

program → block

block → ‘{‘ decls stmts ‘}’

decls → decls decl | ɛ

decl → type id ;

stmts → stmts stmt | ɛ

stmt → block | factor ;

facor → id

The Use of Symbol Tables 1/2

8

The use of symbol tables for translating a language with blocks

Input : { int x ; char y ; { bool y ; x ; y ; } x ; y ; }

Output : { { x : int ; y : bool ; } x : int ; y : char ; }

The Use of Symbol Tables 2/2

9

Input : { int x ; char y ; { bool y ; x ; y ; } x ; y ; }

Output : { { x : int ; y : bool ; } x : int ; y : char ; }

8. Intermediate Code Generation

• Consider intermediate representations for expressions
and statements (No declarations)

• Two most important intermediate representations are
• Trees, including parse trees and (abstract) syntax trees

• Linear representations, especially "three-address code"

• Construction of Syntax Trees (8.2)
• Syntax Trees for Statements

• Representing Blocks in Syntax Trees

• Syntax Trees for Expressions

• Static Checking (8.3)

• Emit three-address code (8.4)

10

8.2 Syntax Trees for Statements

11

One class per statement

AST

Create a While node

while statement

Semantic actionProduction

Node

ExprStmt

While If Do Eval

Syntax Trees for Statements (Cont.)

12

Block

sequence

Example: Part of Syntax Tree

13

Part of a syntax tree for a statement list: if (…) …; while (…) …;

new Seq(new Seq(null, if), while)

new Seq(null, if)

null

ɛ

Syntax Trees for Expressions

14

• Group "similar" operators to reduce the number of

classes of nodes in an implementation of expressions.

• "similar" to mean that the type-checking and code-

generation rules for the operators are similar

Syntax Trees for Expressions

15

8.3 Static Checking

• Static checks are consistency checks that are done during
compilation
• Syntactic Checking.

• There is more to syntax than grammars

• Type Checking

• Assure that an operator or function is applied to the
right number and type of operands

• L-values and R-values
• r-values are what we usually think of as "values," while l-

values are locations.

• Coercion
• A coercion occurs if the type of an operand is automatically

converted to the type expected by the operator

16

8.4 Three-Address Code

• Show how to write functions that process the
syntax tree and, as a side-effect, emit the
necessary three-address code

• Three-Address Instructions

• Translation of Statements
• Example: if expr then stmt1

17

18

.

Code layout for

if-statements

Function gen in class If

generates three-address code

if expr then stmt1

19

Using Translation Scheme

stmt→ if expr

{ after = newlabel();
print(“ifFalse goto after:”); }

then stmt1

{ print(“after: ”); }

code for expr

ifFalse goto after

code for stmt1

after:

if expr then stmt1

Translation of Expressions

20

Pseudocode for function lvalue

x = i - j + k

t = i - j

x = t + k

x = 2*a[i]

t = a[i]

x = 2 * t

a[2*k] = x

t = 2*k

a[t] = x

t3 = j - k

t2 = a[t3]

t1 = 2 * t2

a[i] = t1

a[i] = 2*a[j-k]

21
Pseudocode for function rvalue

22

