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Chapter 11: A Hierarchy of 
Formal Languages and Automata

1. Recursive and Recursively Enumerable Languages

• Languages That Are Not Recursively Enumerable

• A Language That Is Not Recursively Enumerable

• A Language That Is Recursively Enumerable But Not 

Recursive

2. Unrestricted Grammars

3. Context-Sensitive Grammars and Languages

• Context-Sensitive Languages and Linear Bounded 

Automata

• Relation Between Recursive and Context-Sensitive 

Languages 

4. The Chomsky Hierarchy



Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Explain the difference between recursive and recursively enumerable 

languages

• Describe the type of productions in an unrestricted grammar

• Identify the types of languages generated by unrestricted grammars

• Describe the type of productions in a context sensitive grammar

• Give a sequence of derivations to generate a string using the 

productions in a context sensitive grammar

• Identify the types of languages generated by context-sensitive grammars

• Construct a context-sensitive grammar to generate a particular language

• Describe the structure and components of the Chomsky hierarchy



A Hierarchy of Formal Languages and Automata

4

Context-free language 

Context-free grammar, NDPA

Recursively enumerable language 

Unrestricted Grammars, Turing Machine

Context-Sensitive Languages

Context-Sensitive grammars

Linear Bounded Automata

Regular language, Regular grammar, 

Regular expression, NFA, DFA



Recursive and Recursively Enumerable 
Languages

• A language L is recursively enumerable if there exists a 
Turing machine that accepts it (as we have previously stated, 
rejected strings cause the machine to either not halt or halt 
in a nonfinal state)

• A language L is recursive if there exists a Turing machine that 
accepts it and is guaranteed to halt on every valid input 
string

• In other words, a language is recursive if and only if there 
exists a membership algorithm for it



Languages That Are Not Recursively 
Enumerable

• Theorem 11.2 states that, for any nonempty alphabet, 
there exist languages not recursively enumerable 

• One proof involves a technique called diagonalization, 
which can be used to show that, in a sense, there are 
fewer Turing Machines than there are languages

• More explicitly, Theorem 11.3 describes the existence of a 
recursively enumerable language whose complement is 
not recursively enumerable

• Furthermore, Theorem 11.5 concludes that the family of 
recursive languages is a proper subset of the family of 
recursively enumerable languages



Theorem 11.1: Let S be an infinite countable 
set. Then its power set 2S is not countable

Let S = {s1, s2, s3, ...}. Then any element of 2S can be represented by 

a sequence of 0’s and 1’s. For examples: 

the set {s2, s3, s6} =  

the set {s1, s3, s5} =

Now, suppose that 2S were countable 

and 2S ={t1, t2, t3, …}

Pick t = 0011…

Then 𝑡 ∉ 2𝑆

A contradiction!

So, 2S is not countable

1  2  3  4  5  6  7  8  9

Diagonalization



Unrestricted Grammars

• An unrestricted grammar has essentially no restrictions on 

the form of its productions:

• Any variables and terminals on the left side, in any order

• Any variables and terminals on the right side, in any order

• The only restriction is that  is not allowed as the left side of a 

production

• A sample unrestricted grammar has productions

S     → S1B 

S1     → aS1b

bB → bbbB

aS1b → aa   

B → 



Unrestricted Grammars and Recursively 
Enumerable Languages

• Theorem 11.6: Any language generated by an unrestricted 

grammar is recursively enumerable

• Theorem 11.7: For every recursively enumerable language L, 

there exists an unrestricted grammar G that generates L

• These two theorems establish the result that unrestricted 

grammars generate exactly the family of recursively 

enumerable languages, the largest family of languages that 

can be generated or recognized algorithmically



Context-Sensitive Grammars

• In a context-sensitive grammar, the only restriction is that, for 

any production, length of the right side is at least as large as 

the length of the left side

• Example 11.2 introduces a sample context-sensitive grammar 

with productions

S → abc | aAbc 

Ab → bA

Ac → Bbcc

bB→ Bb 

aB→ aa | aaA 

Derive the string aabbcc

S  aAbc

 abAc

 abBbcc

 aBbbcc

 aabbcc



Characteristics of Context-Sensitive Grammars

• An important characteristic of context-sensitive grammars 

is that they are noncontracting, in the sense that in any 

derivation, the length of successive sentential forms can 

never decrease

• These grammars are called context-sensitive because it is 

possible to specify that variables may only be replaced in 

certain contexts

• For instance, in the grammar of Example 11.2, variable A 

can only be replaced if it is followed by either b or c

Ab → bA

Ac → Bbcc



Context-Sensitive Languages

• A language L is context-sensitive if there is a context-

sensitive grammar G, such that either L = L(G) or L = L(G) 

 {  }

• The empty string is included, because by definition, a 

context-sensitive grammar can never generate a language 

containing the empty string

• As a result, it can be concluded that the family of context-

free languages is a subset of the family of context-sensitive 

languages

• The language { anbncn: n ≥ 1 } is context-sensitive, since it is 

generated by the grammar in Example 11.2 



Context-Sensitive Languages and Linear 
Bounded Automata

• Theorem 11.8 states that, for every context-sensitive 

language L not including , there is a linear bounded 

automaton that recognizes L

• Theorem 11.9 states that, if a language L is accepted by a 

linear bounded automaton M, then there is a context-

sensitive grammar that generates L

• These two theorems establish the result that context-

sensitive grammars generate exactly the family of languages 

accepted by linear bounded automata, the context-sensitive 

languages



Relationship Between Recursive and Context-
Sensitive Languages

• Theorem 11.10 states that every context-sensitive language is 

recursive

• Theorem 11.11 maintains that some recursive languages are 

not context-sensitive

• These two theorems help establish a hierarchical relationship 

among the various classes of automata and languages:

• Linear bounded automata are less powerful than Turing 

machines

• Linear bounded automata are more powerful than pushdown 

automata



The Chomsky Hierarchy

• The linguist Noam Chomsky summarized the relationship 

between language families by classifying them into four 

language types, type 0 to type 3 

• This classification, which became known as the Chomsky 

Hierarchy, is illustrated as below

Context-free language 

Recursively enumerable language

Context-Sensitive Languages

Regular language



An Extended Hierarchy

• We have studied additional language families and their relationships to those 

in the Chomsky Hierarchy

• By including deterministic context-free languages and recursive languages, 

we obtain the extended hierarchy as below

Deterministic 

context-free languages

DPDA 

Recursive languages

Turing machine that 

halts on any inputs.



A Closer Look at the Family of Context-
Free Languages

The following figure illustrates the relationships among various 

subsets of the family of context-free languages: regular (LREG), linear 

(LLIN), deterministic context-free (LDCF), and nondeterministic 

context-free (LCF)

Linear languages

Linear grammars


