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Chapter 10: Other Models of Turing Machines

1. Minor Variations on the Turing Machine Theme
• Equivalence of Classes of Automata

• Turing Machine with a Stay-Option 

• Turing Machine with Semi-Infinite Tape

• The Off-Line Turing Machine

2. Turing Machines with More Complex Storage
• Multitape Turing Machines

• Multidimensional Turing Machine

3. Nondeterministic Turing Machines

4. A Universal Turing Machine

5. Linear Bounded Automata



Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Explain the concept of equivalence between classes of automata

• Describe how a Turing machine with a stay-option can be simulated by a 
standard Turing machine

• Describe how a standard Turing machine can be simulated by a machine 
with a semi-infinite tape

• Describe how off-line and multidimensional Turing machines can be 
simulated by standard Turing machines

• Construct two-tape Turing machines to accept simple languages

• Describe the operation of nondeterministic Turing machines and their 
relationship to deterministic Turing machines

• Describe the components of a universal Turing machine

• Describe the operation of linear bounded automata and their 
relationship to standard Turing machines



Equivalence of Classes of Automata

• Definition 10.1

• Two automata are equivalent if they accept the same 

language

• Given two classes of automata C1 and C2, if for every 

automaton in C1 there is an equivalent automaton in C2, the 

class C2 is at least as powerful as C1

• If the class C1 is at least as powerful as C2, and the converse 

also holds, then the classes C1 and C2 are equivalent

• Equivalence can be established either through a 

constructive proof or by simulation

• Use one machine to simulate another machine
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Turing Machines with a Stay-Option

Theorem 10.1: The class of Turing machines with stay-option is 

equivalent to the class of standard Turing machine

Transition function: : Q→Q{L, R, S}

In a Turing Machine with a Stay-Option, the read-write head has the 

option to stay in place after rewriting the cell content

To show equivalence, we argue that any machine with a stay-option 

can be simulated by a standard Turing machine, since the stay-option 

can be accomplished by

• A rule that rewrites the symbol and moves right, and

• A rule that leaves the tape unchanged and moves left
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Turing Machines with Semi-infinite Tape

Turing machines with multiple tracks

Track 1

Track 2

Track 3

a

b
c

Turing machines with semi-infinite tape
The tape has a left boundary

No left move at the left boundary 

A Turing machine with semi-infinite tape is otherwise identical to the 

standard model, except that no left move is possible when the read-

write head is at the tape boundary
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Equivalence of Standard Turing Machines and 
Semi-Infinite Tape Machines

The classes are equivalent because, as shown below, any standard Turing 

machine can be simulated by a machine with a semi-infinite tape

Track 1 for right part of standard tape

Track 2 for left part of standard tape

(a) Machine to  

be simulated

(b) Simulating machine.
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b c
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The Off-Line Turing Machine

a b c d

e f g

Control Unit

Read-only input file

As shown on the left, an off-

line Turing machine has a 

read-only input file in addition 

to the read-write tape

Transitions are determined by 

both the current input symbol 

and the current tape symbol
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Equivalence of Standard Turing Machines 
and Off-Line Turing Machines

a    b       c      d

0    0       1      0

e     f       g

0     1       0

Control Unit

A standard Turing machine with four tracks can 

simulate the computation of an off-line machine

• Two tracks are used 

to store the input file 

contents and current 

position, 

• The other two tracks 

store the contents and 

current position of 

the read-write tape
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Multitape Turing Machines

: Qn 
→Qn{L, R}n

q0

a b c d e fTape 1

Tape 2

An example (n=2)

(q0,a,e) = 

(q1, x, y, L, R)

Transition function

q1

x b c d y fTape 1

Tape 2
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Equivalence of Standard Turing Machines 
and Multitape Turing Machines

a    b       c      d

0    1       0      0

e     f       g      b

0     0       1     0

q

A standard Turing machine with four tracks can 

simulate the computation of a two-tape machine

• Two tracks are used 

to store the contents 

and current position 

of tape 1 

• The other two tracks 

store the contents 

and current position 

of tape 2



Example 10.1: Two-tape machine that 
accepts the language {anbn: n>0}
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Multidimensional Turing Machine

: Q→Q{L, R, U, D}

Transition function of 

a two-dimensional 

Turing machine 

1, -1    1, 1      1, 2 

1, -1

A multidimensional Turing machine has a tape that can extend infinitely 

in more than one dimension

In the case of a two-dimensional machine, the transition function must 

specify movement along both dimensions

two-dimensional address scheme 
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Equivalence of Standard Turing Machines 
and Multidimensional Turing Machines

a                               b

1      #      2       #      1     0      #      - 3     #

Simulate two-dimensional Turing machine 

A standard Turing machine with two tracks can simulate the computation 

of a two-dimensional machine

In the simulating machine, one track is used to store the cell contents and 

the other one to keep the associated address
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Nondeterministic Turing Machines

Definition 10.2: A nondeterministic Turing machine is an automaton as 

Given by Definition 9.1, except that  is now a function

},{2: RLQQ →

Example 10.2: If a Turing machine has transitions specified by

(q0,a)={(q1, b, R), (q2, c, L)},

it is nondeterministic.

Theorem 10.2: The class of deterministic Turing machines and the class

of nondeterministic Turing machine are equivalent

Simulation of a 

nondeterministic

move

#   #   #   #  #

#   a   a   a   #

#   q0 #

#   #   #   #  # 

#   #   #   #   #  #

#        b   a   a   #

#             q1 # 

#        c   a   a   #

#   q2 #

#   #   #   #   #  # 



A Universal Turing Machine

Theorem 10.3: The set of all Turing machines, though infinite, is countable.

A universal Turing machine is a reprogrammable Turing machine which, 

given as input the description of a Turing machine M and a string w, can 

simulate the computation of M on w

A universal Turing machine has the 

structure of a multitape machine, as 

shown in Figure 10.16

Encoding of a Turing machine



Linear Bounded Automata

• The power of a standard Turing machine can be restricted by 

limiting the area of the tape that can be used

• A linear bounded automaton is a Turing machine that restricts 

the usable part of the tape to exactly the cells used by the input

• Input can be considered as bracketed by two special symbols or 

markers which can be neither overwritten nor skipped by the 

read-write head

• Linear bounded automata are assumed to be nondeterministic 

and accept languages in the same manner as other Turing 

machine accepters



Languages Accepted by 
Linear Bounded Automata

• It can be shown that any context-free language can be accepted 

by a linear bounded automaton

• In addition, linear bounded automata can be designed to accept 

languages which are not context-free, such as

L = { anbncn: n ≥ 1}

• Finally, linear bounded automata are not as powerful as standard 

Turing machines

• It is difficult to come up with a concrete and explicitly defined 

language to use as such an example


