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Chapter 9

Turing Machines

1. The Standard Turing Machine
• Definition of a Turing Machine
• Turing Machines as Language Accepters
• Turing Machines as Transducers

2. Combining Turing Machines for Complicated 
Tasks

3. Turing’s Thesis



Learning Objectives
At the conclusion of the chapter, the student will be able to:

•Describe the components of a standard Turing machine

• State whether an input string is accepted by a Turing 
machine

• Construct a Turing machine to accept a specific 
language

• Trace the operation of a Turing machine transducer 
given a sample input string

• Construct a Turing machine to compute a simple 
function 

• State Turing’s thesis and discuss the circumstantial 
evidence supporting it
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Definition of a Turing Machine
Definition 9.1: A Turing machine M is defined by

M=(Q, , , , q0, , F)

where
Q is a finite set of internal states,

 is the input alphabet,

 is a finite set of symbols called the tape alphabet,

: Q→Q{L, R} is the transition function,

q0  Q is the initial state,

   is a special symbol called blank,

F  Q is the set of final states  

• The tape acts as the input, output, 
and storage medium. 

• The read-write head can travel in 
both directions, processing one 
symbol per move

• Input string is surrounded by 
blanks, so    − {} 
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Definition of a Turing Machine

Transition function: : Q→ Q {L, R}

Halt: it reaches to a configuration for which  is not defined 

Computation: The sequence of configurations leading to a halt state. 

Configuration: tape symbols, state, tape head position

• Input to δ consists of the current state of the control unit and 
the current tape symbol

• Output of δ consists of a new state, new tape symbol, and 
location of the next symbol to be read (L or R)

• δ is a partial function, so that some (state, symbol) input 
combinations may be undefined

• δ causes the machine to change states and possibly overwrite 
the tape contents
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Examples

Example 9.1: Given the sample transition rule 

(q0, a) = (q1, d, R)

q0abc |− dq1bc 

a b

q0

c

q1

d b c

According to this rule, when the control unit is in state q0 and the 
tape symbol is a, the new state is q1, the symbol d replaces a on the 
tape, and the read-write head moves one cell to the right

Configuration
before the move 

Configuration
after the move 
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Examples

Example 9.2: Given Q = {q0, q1},  = {a, b},  = {a, b, }, F = {q1}

(q0, a) = (q0, b, R)

(q0, b) = (q0, b, R)

(q0, ) = (q1, , L)

• The machine starts in q0 and, as long as it reads a’s, will replace 
them with b’s and continue moving to the right, but b’s will not be 
modified

• When a blank is found, the control unit switches states to q1 and 
moves one cell to the left

• The machine halts whenever it reaches a configuration for which δ is 
not defined (in this case, state q1)
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Examples

Example 9.2: Given Q = {q0, q1},  = {a, b},  = {a, b, }, F = {q1}

a a

q0

b b

q0

b a

q0

b b

q1

q0aa |− bq0a |− bbq0 |− bq1b

A sequence of moves as the machine processes a tape with initial contents aa

(q0, a) = (q0, b, R)

(q0, b) = (q0, b, R)

(q0, ) = (q1, , L)



Transition Graphs for Turing Machines

• In a Turing machine transition graph, each edge is labeled with three 
items: current tape symbol, new tape symbol, and direction of the 
head move

• Figure 9.4 shows the transition graph for the Turing Machine in 
Example 9.2
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A Turing Machine that Never Halts

Example 9.3:

(q0, a) = (q1, a, R)

(q0, b) = (q1, b, R)

(q0, ) = (q1, , R)

(q1, a) = (q0, a, L)

(q1, b) = (q0, b, L)

(q1, ) = (q0, , L)

Given Q = {q0, q1},  = {a, b},  = {a, b, }, F = {}

This machine with input string ab runs forever –in an infinite loop-

with the read-write head moving alternately right and left, but making 

no modifications to the tape

It is possible for a Turing machine to never halt on certain inputs, as 

is the case with Example 9.3 (below) and input string ab
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Standard Turing Machine

1. One tape unbounded in both directions

2. Deterministic: At most one move for each configuration

3. No special input file and No special output device

Configuration (Instantaneous description): 

x1qx2 (or  a1a2…ak-1qakak+1…an)

Move from one configuration to another:

abq1cd |− abeq2d   (if (q1, c) = (q2, e, R))

abq1cd |− aq2bed   (if (q1, c) = (q2, e, L))

ak-1 ak

q

… …a1 an
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Examples

a a

q0

b b

q0

b a

q0

b b

q1

q0aa |− bq0a |− bbq0 |− bq1b

A sequence of moves with initial tape contents aa

(q0, a) = (q0, b, R)

(q0, b) = (q0, b, R)

(q0, ) = (q1, , L)

Example 9.4, 9.5: Configurations and moves in Example 9.2

Example 9.2

Configurations:

Moves:

q0aa bq0a bbq0 bq1b
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Turing Machines as Language Accepters

Definition 9.3: Let M=(Q, , , , q0, , F) be a Turing machine. Then the

language accepted by M is

L(M) = {w  + : q0w |− x1qfx2 for some gf  F, x1, x2  *}*

• Turing machines can be viewed as language accepters

• The language accepted by a Turing machine is the set of all strings 

which cause the machine to halt in a final state, when started in its 

standard initial configuration (q0, leftmost input symbol)

• A string is rejected if

• The machine halts in a nonfinal state, or

• The machine never halts
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Examples

Example 9.6: For ={0, 1}, design a Turing machine M such that L(M)=L(00*)

Q={q0, q1, q2}, F={q2},  ={0, 1, }, 
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Example 9.7: For ={0, 1}, design a Turing machine that accept

L={anbn : n1}

Q={q0, q1, q2 , q3, q4}, F={q4},  ={a, b, x, y, } 



Example 9.7: For ={0, 1}, design a Turing machine that accept

L={anbn : n1}

Q={q0, q1, q2 , q3, q4}, F={q4},  ={a, b, x, y, } 



Example 9.7: For ={0, 1}, design a Turing machine that accept

L={anbn : n1}

Q={q0, q1, q2 , q3, q4}, F={q4},  ={a, b, x, y, } 
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Examples

Example 9.8: For ={a, b, c}, design a Turing machine that accept

L={anbncn : n1}

Q={q0, q1, q2 , q3, q4}, F={q4},  ={a, b, c, x, y, z, } 
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Turing Machines as Transducers
Definition 9.3: A function f with domain D is said to be Turing-computable

or just computable if there exists some Turing machine M=(Q,,,,q0,,F)

such that for all w  D

q0w |− qff(w), qf F*

• Turing machines provide an abstract model for digital computers, 

acting as a transducer that transforms input into output

• A Turing machine transducer implements a function that treats the 

original contents of the tape as its input and the final contents of the 

tape as its output

• A function is Turing-computable if it can be carried out by a Turing 

machine capable of processing all values in the function domain
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Example 9.9: Given two positive integers x and y,
design a Turing machine that computes x + y. 

𝑞0𝑤 𝑥 0𝑤 𝑦 𝑞𝑓𝑤(𝑥 + 𝑦)

x is encoded by its uniary representation 𝑤 𝑥

+ is represented by 0 

𝑥 + y is encoded 𝑏𝑦 𝑤 𝑥 0𝑤 𝑦

*|−



• The transducer has Q = { q0, q1, q2, q3, q4 } with initial state q0 and final 
state q4

• The defined values of the transition function are
δ(q0, 1) =  (q0, 1, R) δ(q0, 0) =  (q1, 1, R)

δ(q1, 1) =  (q1, 1, R) δ(q1, ) =  (q2, , L)

δ(q2, 1) =  (q3, , L) δ(q3, 1) =  (q3, 1, L)

δ(q3, ) =  (q4, , R) 

• When the machine halts, the read-write head is positioned on the 
leftmost symbol of the unary representation of x + y
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Example 9.10: Design a Turing machine that copies strings of 1’s. 

More precisely, find a machine that perform the computation 

q0w |− qf ww

for any w  {1}+

*
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Example 9.11: Let x and y be two positive integers represented 

in unary notation. Construct a Turing machine that will halt in a 

final state qy if x  y, and that will halt in a non-final state qn if x < y. 

.        ,w(x)0w(y)     )(0)(

,        w(x)0w(y),     )(0)(

0

0

yxifqywxwq

yxifqywxwq

n

y





|−
*

|−
*
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Example 9.11: Let x and y be two positive integers represented 

in unary notation. Construct a Turing machine that will halt in a 

final state qy if x  y, and that will halt in a non-final state qn if x < y. 

𝑞0111011 𝑞𝑦111011, 𝑥 = 3 𝑎𝑛𝑑 𝑦 = 2,

𝑞0110111 𝑞𝑛110111, 𝑥 = 2 𝑎𝑛𝑑 𝑦 = 3.|−
*

|−
*
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Combining Turing Machines for 
Complicated Tasks

Example 9.12: Design a Turing machine that computes the function

.           ,0

,     ,),(

yxif

yxifyxyxf

=

+=

Comparer

C

Adder

A

Eraser

E

xy

x<y

f(x,y)
x,y

.           ,w(x)0w(y)     )(0)(

,            w(x)0w(y),     )(0)(

0,0,

0,0,

yxifqywxwq

yxifqywxwq

EC

AC





|−
*

|−
*

0     w(x)0w(y)

w(x)w(y)0      w(x)0w(y)

,0,

,0,

fEE

fAA

qq

qq

|−
*

|−
*

x+y

0
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Combining Turing Machines for 
Complicated Tasks (Cont.)

Example 9.13: Consider the instruction: If a then qj else qk.

(qi,a) = (qj0,a,R)    for all qi  Q,

(qi,b) = (qk0,b,R)   for all qi  Q and all b-{a},

(qj0,c) = (qj,c,L)    for all c  ,

(qk0,a) = (qk,c,L)    for all c  .

# #

Workspace for A Workspace for B

Region separator

T

Consider subprogram
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Turing’s Thesis

Turing thesis (a hypothesis): Any computation that can be 

carried out by mechanical means can be performed by some 

Turing machine. 

A computation is mechanical if and only if it can be performed

by some Turing machine. 

1. Anything that can be done on any existing digital computer can also

be done by a Turing machine.

2. No one has yet been able to suggest a problem, solvable by what we

intuitively consider an algorithm, for which a Turing machine program

cannot be written.

3. Alternative models have been proposed for mechanical computation,

but none of them are more powerful than the Turing machine model.
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Turing’s Thesis (Cont.)

Definition 9.3: An algorithm for a function f: D→R is a

Turing machine M, which given as input any d  D on

its tape, eventually halts with the correct answer f(d) on 

its tape. Specially, we can require that

q0d |− qff(d), qf F

for all d  D

*
M

An acceptance of Turing’s Thesis leads to a definition 

of an algorithm:


