
Mobile Robotics

Path Planning

Programming Assignments and Projects

2

Metric Path Planning as Search

• In AI “search” means that the answer is in the search space,
often just finding the path to the answer (goal)

• Types of AI search

– Blind, brute-force, uninformed

• Breadth-first (Wavefront)

• Depth-first

– Heuristic

• Dijkstra

• A*

• For Path planning

– A* for relational graphs, regular girds

– Breadth-first (Wavefront) for operating directly on regular grid

3

Uninformed Search

• Breadth-first (BF)

– Complete

– Optimal if action costs equal

– Time and space: O(bd)

• Depth-first (DF)

– Not complete in infinite spaces

– Not optimal

– Time: O(bm)

– Space: O(bm) (can forget explored subtrees)

(b: branching factor, d: goal depth, m: max. tree depth)

4

A*: Minimize the Estimated Path Cost f(n)

• g(n) = actual cost from the initial state to n.

• h(n) = estimated cost from n to the next goal.

• f(n) = g(n) + h(n), the estimated cost of the cheapest solution
through n.

• Let h*(n) be the actual cost of the optimal path from n to the
next goal.

• h is admissible if the following holds for all n:

h(n) ≤ h*(n)

• We require that for A* , h is admissible (the straight-line distance is
admissible in the Euclidean Space)

• Note 1: when h(n) = 0 for all n, A* is Dijkstra’s algorithm.

• Note 2: when all edges have the same cost, Dijkstra is BF search.

Graph representation

• Adjacency lists: Given a graph G=(V, E)

• Example: For an undirected graph:

• Space: (V + E).

• Time: to list all vertices adjacent to u: (degree(u)).

• Time: to determine whether (u, v) E: O(degree(u)).

Graph representation (Cont.)

• Adjacency lists: Given a graph G=(V, E)

• Example: For a directed graph:

• Space: (V + E).

• Time: to list all vertices adjacent to u: (degree(u)).

• Time: to determine whether (u, v) E: O(degree(u)).

Graph representation (Cont.)

• Adjacency matrix: Given a graph G=(V, E)

• Examples:

• Space: (V2).

• Time: to list all vertices adjacent to u: (|V|).

• Time: to determine whether (u, v) E: O(1).

Graph representation (Cont.)

• Occupancy Grid Map

– Eight neighbors or four neighbors

– We are going to use four neighbors in programming assignments PA4A
and PA4B, and eight neighbors in programming project PP4

• Example and its representation

– Cells with 1:

• Occupied

– Cells with 0:

• Not Occupied

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0
0 0 1 1 1 0

0 0 0 0 1 0

Breadth-first search

• Input: Graph G = (V, E), either directed or undirected, and source

vertex s  V.

• Output: v.d = distance (smallest # of edges) from s to v for all v  V .

– Idea: Send a wave out from s

– First hits all vertices 1 edge from s.

– From there, hits all vertices 2 edges from s.

– Etc.

• Use FIFO queue Q to maintain wavefront.

– v  Q if and only if wave has hit but has not come out of yet.

Pseudocode of Breadth-first search

• Time: O(V+E)

• Adjacency list is used.

• Example:

BFS(V, E, s)

for each 𝑢 ∈ 𝑉 − {𝑠}
𝑢. 𝑑 = ∞

𝑠. 𝑑 = 0
𝑄 = ∅
Enqueue(𝑄, 𝑠)

while 𝑄 ≠ ∅
𝑢 = Dequeue(𝑄)

for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢]
if 𝑣. 𝑑 = ∞
𝑣. 𝑑 = 𝑢. 𝑑 + 1
Enqueue(𝑄, 𝑣)

Example of Wavefront Planning

Start

Goal

S

G

Bread-First: How Many Steps

1

1

8

82

2 3
3

4
4

4

5

5

6

6

7

7

7

S 9

9
10

G11

0

S

G

S

G

2

1

17

184

3 6
5

9
8

7

11

10

13

12

15

16

14

S 19

20
21

G22

0

Minimum distance from source
Ordering of existing the queue

(checking or expanding)

Order to check neighbors: up, left, down, right

Pseudocode of Breadth-first search: Path Planning

BFS(V, E, s, g)

for each 𝑢 ∈ 𝑉 − {𝑠}
𝑢. 𝑑 = ∞

𝑠. 𝑑 = 0
𝑄 = ∅
Enqueue(𝑄, 𝑠)

step = 0

while 𝑄 ≠ ∅
𝑢 = Dequeue(𝑄)

𝑢. 𝑐 = step
step = step + 1

if (u != g)

for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢]
if 𝑣. 𝑑 = ∞
𝑣. 𝑑 = 𝑢. 𝑑 + 1
Enqueue(𝑄, 𝑣)

else

break

Occupancy Grid Map: Find Neighbors

• Order to check neighbors: up, left, down, right

grid

next

Programming Assignment: PA4A

S

G

Minimum distance from source

Ordering of existing the queue

(checking or expanding)

Order to check neighbors: up, left, down, right

S

G

0 1

1 2

2 3
3

4
4

4

5

5

6

6 7

S

G

0 2

1 4

3 6
5

9
8

7

11

10

13

12

Using the breadth-first algorithm, define

a function, search() that returns two

tables:
• Value table that keeps track the minimum

value from source to each cell, and

• Expand table that keeps track of which

step each node was expanded.

Programming Assignment: PA4B

S

G

‘ ‘
‘ ‘ ‘ ‘

‘ ‘

‘>’ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘‘v’

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘‘v’

‘ ‘ ‘ ‘‘>’
‘ ’ ‘ ‘ ‘ ‘

‘>’
‘ ’

‘ ‘

‘^’

‘ ‘

‘*’

‘ ‘ ‘ ‘ ‘ ‘

Modify the search function so that it returns an additional table

• Action table that shows the shortest path as follows:

Algorithm (Note: next is goal intially)

mark action(next) with ‘*’
while (next != start)

for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢]
if value(𝑣) == values[next] - 1

mark action(𝑣) with a proper symbol.
next = 𝑣
break

delta_name[(a+2)%4]

How to mark a proper symbol
• up → ‘v’,
• left → ‘>’
• down → ‘^’
• right → ‘<‘

0 ≤ 𝑎 ≤ 3

Shortest paths

• Input:

– Directed graph G = (V, E)

– Weight function w : E → R

• Weight of path p = v0, v1, …, vk

• Shortest-path weight u to v:

• Shortest path u to v is any path p such that w(p) = (u, v).


=

−=
k

i

ii vvwpw
1

1),()(

Example

• Shortest paths from s

• This example shows that the shortest path might not be unique.

• It also shows that when we look at shortest paths from one vertex to all
other vertices, the shortest paths are organized as a tree.

Variants

• Single-source: Find shortest paths from a given source vertex s  V to
every vertex v  V .

• Single-destination: Find shortest paths to a given destination vertex.

• Single-pair: Find shortest path from u to v. No way known that’s better
in worst case than solving single-source.

• All-pairs: Find shortest path from u to v for all u, v  V.

Output of single-source shortest-path algorithm

For each vertex v V:

• v.d = (s, v).

– Initially, v.d = .

– Reduces as algorithms progress. But always maintain v.d  (s, v).

– Call v.d a shortest-path estimate.

• v. = predecessor of v on a shortest path from s.

– If no predecessor, v. = NIL.

– induces a tree—shortest-path tree.

– We won’t prove properties of  in lecture.

Dijkstra’s algorithm

• No negative-weight edges.

• Essentially a weighted version of breadth-first search.

– Instead of a FIFO queue, uses a priority queue.

– Keys are shortest-path weights (v.d).

• Have two sets of vertices:

– S = vertices whose final shortest-path weights are determined,

– Q = priority queue = V - S.

Initialization and Relaxing

• INIT-SINGLE-SOURCE.

• Relaxing an edge (u, v)

Dijkstra’s algorithm (Cont.)

• Dijkstra’s algorithm can be viewed as greedy, since it always
chooses the “lightest” (“closest”?) vertex in V-S to add to S.

Examples

• Order of adding to S: s, y, z, x.

Pseudocode of Dijkstra’s algorithm

Dijkstra(V, E, w, s)

for each 𝑢 ∈ 𝑉
𝑢. 𝑑 = ∞
𝑢. 𝜋 = 𝑛𝑖𝑙

𝑠. 𝑑 = 0
S = ∅
𝑄 = 𝑉
while 𝑄 ≠ ∅
𝑢 = Extract-Min(𝑄) //based on 𝑢. 𝑑
𝑆 = 𝑆 ∪ {𝑢}
for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢]

if 𝑣. 𝑑 >= 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)
𝑣. 𝑑 = 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)
𝑣. 𝜋 = 𝑢

Pseudocode of Dijkstra’s and A* algorithms

aStar(V, E, w, s, g, h)
for each 𝑢 ∈ 𝑉

𝑢. 𝑓 = ∞ and 𝑢. 𝑑 = ∞
𝑢. 𝜋 = 𝑛𝑖𝑙

𝑠. 𝑓 = 0 𝑎𝑛𝑑 𝑠. 𝑑 = 0
𝑆 = ∅
𝑄 = 𝑉
while 𝑄 ≠ ∅
𝑢 = Extract-Min(𝑄) //based on 𝑢. 𝑓
if (𝑢 = 𝑔)

return “success”
𝑆 = 𝑆 ∪ {𝑢}
for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢]

if 𝑣. 𝑑 >= 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)
𝑣. 𝑑 = 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)
𝑣. 𝜋 = 𝑢

𝑣. 𝑓 = 𝑣. 𝑑 + ℎ(𝑣)
return “fail”

Dijkstra(V, E, w, s, g)

for each 𝑢 ∈ 𝑉
𝑢. 𝑑 = ∞
𝑢. 𝜋 = 𝑛𝑖𝑙

𝑠. 𝑑 = 0
S = ∅
𝑄 = 𝑉
while 𝑄 ≠ ∅
𝑢 = Extract-Min(𝑄) //based on 𝑢. 𝑑
if (𝑢 = 𝑔)

return “success”

𝑆 = 𝑆 ∪ {𝑢}
for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢]

if 𝑣. 𝑑 >= 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)
𝑣. 𝑑 = 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)
𝑣. 𝜋 = 𝑢

return “fail”

BFS A* algorithm

BFS(V, E, s, g)

for each 𝑢 ∈ 𝑉 − {𝑠}
𝑢. 𝑑 = ∞

𝑠. 𝑑 = 0
𝑄 = ∅
Enqueue(𝑄, 𝑠) // FIFO Queue

step = 0

while 𝑄 ≠ ∅
𝑢 = Dequeue(𝑄) //based on 𝑢. 𝑑
𝑢. 𝑐 = step
step = step + 1

if (u != g)

for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢]
if 𝑣. 𝑑 = ∞
𝑣. 𝑑 = 𝑢. 𝑑 + 1
Enqueue(𝑄, 𝑣)

else

break

BFSaStar (V, E, s, g, h)

for each 𝑢 ∈ 𝑉 − {𝑠}
𝑢. 𝑑 = ∞

𝑠. 𝑑 = 0
𝑠. 𝑓 = 𝑠. 𝑑 + 𝑠. ℎ
𝑄 = ∅
Enqueue(𝑄, 𝑠) // Priority Queue

step = 0

while 𝑄 ≠ ∅
𝑢 = Dequeue(𝑄) //based on 𝑢. 𝑓
𝑢. 𝑐 = step
step = step + 1

if (u != g)

for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢]
if 𝑣. 𝑑 = ∞
𝑣. 𝑑 = 𝑢. 𝑑 + 1
𝑠. 𝑓 = 𝑠. 𝑑 + 𝑠. ℎ
Enqueue(𝑄, 𝑣)

else

break

S

G

How Many Steps: Value and Expand

S

G

0 1

1 2

2 3
3

4
4

4

5

5

6

6 7

0 1

1 62

2 3 5
3

4
4

4 3 2 1 2 3

3 2 1 0 1 2

4 3 2 1 2 3
5 4 3 2 3 4

6 5 4 3 4 5

S

G

BF: Value

A*: g-valuesA*: h-values

S

G

S

G

0 2

1 4

3 6
5

9
8

7

11

10

13

12

0 1

2 83

4 5 76

BF: Expand

A*: Expand

Programming Assignment: PA4C

S

G

Using BFS A* algorithm, define a

function, search() that returns two tables:
• Value table that keeps track the minimum

value from source to each cell, and

• Expand table that keeps track of which

step each node was expanded.

S

G

0 1

1 62

2 3 5
3

4
4

A*: g-values

S

G

0 1

2 83

4 5 76

A*: Expand

Programming Assignment: PA4D

S

G

S

G

‘ ‘
‘ ‘ ‘ ‘

‘ ‘

‘>’ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘‘v’

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘‘v’

‘ ‘ ‘ ‘‘>’
‘ ’ ‘ ‘ ‘ ‘

‘>’
‘ ’

‘ ‘

‘^’

‘ ‘

‘*’

‘ ‘ ‘ ‘ ‘ ‘

Modify the search function so that it

returns an additional table

• Action table that shows the shortest

path as follows:

S

G

0 1

1 62

2 3 5
3

4
4

A*: g-values

Programming Project: PP4

• Implement Dijkstra Algorithm and A* Algorithm

• The map is the occupancy grid using eight-

neighbor connection. Each cell has a probability

of occupancy.

0 0.2 0.8 0 0 0

0 0.2 0.8 0 0 0

0 0.2 0 0 0.8 0

0 0 0.2 0.8 0.8 0

0 0 0 0.2 0.8 0

• A skeleton code is given. You only need to provide implementations for the

following three functions and the update (relax) step of the Dijkstra algorithm.

1. get_neighborhood: This function returns a vector of the neighbors of a given cell,

considering the boundaries of the map.

2. get_edge_cost: This function calculates the cost of moving from a given cell to

one of its neighbors. Note that if the occupancy probability of the neighbor is

greater than or equal to 0.5, then the cost is infinity. Otherwise, the cost is the

distance between the two cells plus 2 times the occupancy probability of the

neighbor.

3. get_heuristic: This function calculates the distance of a given cell to the goal cell.

	Slide 1: Mobile Robotics
	Slide 2: Metric Path Planning as Search
	Slide 3: Uninformed Search
	Slide 4: A*: Minimize the Estimated Path Cost f(n)
	Slide 5: Graph representation
	Slide 6: Graph representation (Cont.)
	Slide 7: Graph representation (Cont.)
	Slide 8: Graph representation (Cont.)
	Slide 9: Breadth-first search
	Slide 10: Pseudocode of Breadth-first search
	Slide 11: Example of Wavefront Planning
	Slide 12: Bread-First: How Many Steps
	Slide 13: Pseudocode of Breadth-first search: Path Planning
	Slide 14: Occupancy Grid Map: Find Neighbors
	Slide 15: Programming Assignment: PA4A
	Slide 16: Programming Assignment: PA4B
	Slide 17: Shortest paths
	Slide 18: Example
	Slide 19: Variants
	Slide 20: Output of single-source shortest-path algorithm
	Slide 21: Dijkstra’s algorithm
	Slide 22: Initialization and Relaxing
	Slide 23: Dijkstra’s algorithm (Cont.)
	Slide 24: Examples
	Slide 25: Pseudocode of Dijkstra’s algorithm
	Slide 26: Pseudocode of Dijkstra’s and A* algorithms
	Slide 27: BFS A* algorithm
	Slide 28: How Many Steps: Value and Expand
	Slide 29: Programming Assignment: PA4C
	Slide 30: Programming Assignment: PA4D
	Slide 31: Programming Project: PP4

