Mobile Robotics

Path Planning
Programming Assignments and Projects

Metric Path Planning as Search

- In AI "search" means that the answer is in the search space, often just finding the path to the answer (goal)
- Types of AI search
- Blind, brute-force, uninformed
- Breadth-first (Wavefront)
- Depth-first
- Heuristic
- Dijkstra
- A*
- For Path planning
- A* for relational graphs, regular girds
- Breadth-first (Wavefront) for operating directly on regular grid

Uninformed Search

- Breadth-first (BF)
- Complete
- Optimal if action costs equal
- Time and space: O(bd)

- Depth-first (DF)
- Not complete in infinite spaces
- Not optimal
- Time: O(bm)
- Space: O(bm) (can forget explored subtrees)

(b: branching factor, d: goal depth, m: max. tree depth)

A^{*} : Minimize the Estimated Path Cost $f(n)$

- $g(n)=$ actual cost from the initial state to n.
- $h(n)=$ estimated cost from n to the next goal.
- $f(n)=g(n)+h(n)$, the estimated cost of the cheapest solution through n .
- Let $h^{*}(n)$ be the actual cost of the optimal path from n to the next goal.
- h is admissible if the following holds for all n :

$$
h(n) \leq h^{*}(n)
$$

- We require that for A^{*}, h is admissible (the straight-line distance is admissible in the Euclidean Space)
- Note 1: when $h(n)=0$ for all n, A^{*} is Dijkstra's algorithm.
- Note 2: when all edges have the same cost, Dijkstra is BF search.

Graph representation

- Adjacency lists: Given a graph $G=(V, E)$
- Example: For an undirected graph:

- Space: $\Theta(\mathrm{V}+\mathrm{E})$.
- Time: to list all vertices adjacent to u : Θ (degree(u)).
- Time: to determine whether $(u, v) \in E: O($ degree $(u))$.

Graph representation (Cont.)

- Adjacency lists: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Example: For a directed graph:

- Space: $\Theta(V+E)$.
- Time: to list all vertices adjacent to u: Θ (degree(u)).
- Time: to determine whether $(u, v) \in E: O($ degree $(u))$.

Graph representation (Cont.)

- Adjacency matrix: Given a graph $G=(\mathrm{V}, \mathrm{E})$
- Examples:

- Space: $\Theta\left(\mathrm{V}^{2}\right)$.
- Time: to list all vertices adjacent to $u: ~ \Theta(|\mathrm{~V}|)$.
- Time: to determine whether $(u, v) \in \mathrm{E}: \mathrm{O}(1)$.

Graph representation (Cont.)

- Occupancy Grid Map
- Eight neighbors or four neighbors

- We are going to use four neighbors in programming assignments PA4A and PA4B, and eight neighbors in programming project PP4
- Example and its representation
- Cells with 1 :
- Occupied
- Cells with 0 :
- Not Occupied

0	0	1	0	0	0
0	0	1	0	0	0
0	0	0	0	1	0
0	0	1	1	1	0
0	0	0	0	1	0

Breadth-first search

- Input: Graph $G=(V, E)$, either directed or undirected, and source vertex $s \in V$.
- Output: v.d = distance (smallest \# of edges) from s to v for all $v \in V$.
- Idea: Send a wave out from s
- First hits all vertices 1 edge from s.
- From there, hits all vertices 2 edges from s.
- Etc.
- Use FIFO queue Q to maintain wavefront.
$-v \in Q$ if and only if wave has hit but has not come out of yet.

Pseudocode of Breadth-first search

BFS(V, E, s) for each $u \in V-\{s\}$

$$
\text { u. } d=\infty
$$

s. $d=0$
$Q=\varnothing$
Enqueue (Q, s)
while $Q \neq \emptyset$

$$
u=\text { Dequeue }(Q)
$$

$$
\text { for each } v \in G . \operatorname{Adj}[u]
$$

if $v . d=\infty$
$v . d=u . d+1$
Enqueue (Q, v)

- Time: $\mathrm{O}(\mathrm{V}+\mathrm{E})$
- Adjacency list is used.
- Example:

Example of Wavefront Planning

Bread-First: How Many Steps

Minimum distance from source
Ordering of existing the queue (checking or expanding)

0	1		7	8

| 0 | 2 | | 15 | 17 |
| :--- | :--- | :--- | :--- | :--- | 19.

Order to check neighbors: up, left, down, right

Pseudocode of Breadth-first search: Path Planning

$$
\begin{aligned}
& \text { BFS }(V, E, s, g) \\
& \text { for each } u \in V-\{s\} \\
& \quad u . d=\infty \\
& \text { s. } d=0 \\
& Q=\varnothing \\
& \text { Enqueue }(Q, s) \\
& \text { step }=0 \\
& \text { while } Q \neq \emptyset \\
& u=\operatorname{Dequeue}(Q) \\
& u . c=\operatorname{step} \\
& \text { step }=\operatorname{step}+1 \\
& \text { if }(u!=\text { g) } \\
& \text { for each } v \in G . A d j[u] \\
& \text { if } v . d=\infty \\
& v . d=u . d+1 \\
& \text { Enqueue }(Q, v) \\
& \text { else } \\
& \text { break }
\end{aligned}
$$

Occupancy Grid Map: Find Neighbors

- Order to check neighbors: up, left, down, right

delta $=$	$[[-1,0], \#$ go up
	$[0,-1], \#$ go left
	$[1,0], \#$ go down
	$[0,1]] \#$ go right


```
for neibor in delta:
    expd = [next[0] + neibor[0], next[1] + neibor[1]]
    if(expd[0] in range(len(grid))) and (expd[1] in range(len(grid[0]))):
```


Programming Assignment: PA4A

Using the breadth-first algorithm, define a function, search() that returns two tables:

- Value table that keeps track the minimum value from source to each cell, and
- Expand table that keeps track of which step each node was expanded.

Minimum distance from source

0	1	wn		
1	2		6	
2	3	4	5	
3	4			
4	5	6	7	

Ordering of existing the queue (checking or expanding)

Order to check neighbors: up, left, down, right

Programming Assignment: PA4B

Modify the search function so that it returns an additional table

- Action table that shows the shortest path as follows:

' $>$ '	'V'	' 6	6 6	6	6 6
6 6	'V'	6 6	(*)	6 6	6 6
6 6	'>'	'>'	'^'	'6	' 6
' '	' '	' 6	6 6	6 6	6 6
6 6	'6	6 6	66	6 6	6 6

Algorithm (Note: next is goal intially)
mark action(next) with *'
while (next != start)
for each $v \in G . \operatorname{Adj}[u]$
if value $(v)==$ values[next] - 1
mark action (v) with a proper symbol.
next $=v$
break
delta_name[(a+2)\%4]
How to mark a proper symbol

- up \rightarrow 'v',
- left \rightarrow ' $>$ '
- down \rightarrow ' \times ’
- right \rightarrow '<'

$$
0 \leq a \leq 3
$$

Shortest paths

- Input:
- Directed graph G = (V, E)
- Weight function w: $\mathrm{E} \rightarrow \mathrm{R}$
- Weight of path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

- Shortest-path weight u to v :

$$
\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\sim} v\} & \text { if there exists a path } u \leadsto v, \\ \infty & \text { otherwise } .\end{cases}
$$

- Shortest path u to v is any path p such that $w(p)=\delta(u, v)$.

Example

- Shortest paths from s

- This example shows that the shortest path might not be unique.
- It also shows that when we look at shortest paths from one vertex to all other vertices, the shortest paths are organized as a tree.

Variants

- Single-source: Find shortest paths from a given source vertex $s \in V$ to every vertex $v \in V$.
- Single-destination: Find shortest paths to a given destination vertex.
- Single-pair: Find shortest path from u to v. No way known that's better in worst case than solving single-source.
- All-pairs: Find shortest path from u to v for all $u, v \in V$.

Output of single-source shortest-path algorithm

For each vertex $v \in \mathrm{~V}$:

- v. $d=\delta(\mathrm{s}, \mathrm{v})$.
- Initially, v.d = ∞.
-Reduces as algorithms progress. But always maintain v.d $\geq \delta(\mathrm{s}, \mathrm{v})$.
-Call v.d a shortest-path estimate.
- $v . \pi=$ predecessor of v on a shortest path from s.
- If no predecessor, v. $\pi=$ NIL.
$-\pi$ induces a tree-shortest-path tree.
-We won't prove properties of π in lecture.

Dijkstra's algorithm

- No negative-weight edges.
- Essentially a weighted version of breadth-first search.
- Instead of a FIFO queue, uses a priority queue.
- Keys are shortest-path weights (v.d).
- Have two sets of vertices:
- S = vertices whose final shortest-path weights are determined,
$-\mathrm{Q}=$ priority queue $=\mathrm{V}-\mathrm{S}$.

Initialization and Relaxing

- INIT-SINGLE-SOURCE.

Init-Single-Source (G, s)
for each $v \in G . V$

$$
\begin{gathered}
v . d=\infty \\
v \cdot \pi=\mathrm{NIL} \\
s . d=0
\end{gathered}
$$

- Relaxing an edge (u, v)

$$
\begin{aligned}
& \operatorname{ReLAX}(u, v, w) \\
& \text { if } v \cdot d>u \cdot d+w(u, v) \\
& v \cdot d=u \cdot d+w(u, v) \\
& v \cdot \pi=u
\end{aligned}
$$

Dijkstra's algorithm (Cont.)

Dijkstra(G, w, s)
Init-Single-Source (G, s)
$S=\emptyset$
$Q=G . V \quad / /$ i.e., insert all vertices into Q
while $Q \neq \emptyset$
$u=\operatorname{Extract}-\operatorname{Min}(Q)$
$S=S \cup\{u\}$
for each vertex $v \in G . \operatorname{Adj}[u]$
$\operatorname{Relax}(u, v, w)$

- Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" ("closest"?) vertex in V-S to add to S.

Examples

- Order of adding to $\mathrm{S}: \mathrm{s}, \mathrm{y}, \mathrm{z}, \mathrm{x}$.

(a)

(d)

(b)

(e)

(c)

(f)

Pseudocode of Dijkstra's algorithm

```
DIjkstra( }G,w,s
    Init-Single-Source( }G,s
    S=\emptyset
    Q = G.V // i.e., insert all vertices into Q
    while Q\not=\emptyset
        u= Extract-Min(Q)
        S=S\cup{u}
        for each vertex v}\inG.Adj[u
        RELAX}(u,v,w
Init-Single-Source( }G,s
    for each v}\inG.
\[
\begin{aligned}
& v . d=\infty \\
& v \cdot \pi=\mathrm{NIL}
\end{aligned}
\]
\[
s . d=0
\]
\[
\operatorname{RELAX}(u, v, w)
\]
\[
\text { if } v . d>u . d+w(u, v)
\]
\[
v \cdot d=u \cdot d+w(u, v)
\]
\[
v \cdot \pi=u
\]
```

Dijkstra(V, E, w, s) for each $u \in V$
$u . d=\infty$
u. $\pi=n i l$
s. $d=0$
$S=\varnothing$
$Q=V$
while $Q \neq \varnothing$
$u=\operatorname{Extract-Min}(Q) / / b a s e d$ on $u . d$
$S=S \cup\{u\}$
for each $v \in G . A d j[u]$
if $v . d>=u . d+w(u, v)$
$v . d=u . d+w(u, v)$
$v . \pi=u$

Pseudocode of Dijkstra's and A^{*} algorithms

Dijkstra(V, E, w, s, g) for each $u \in V$
$u . d=\infty$
$u . \pi=n i l$
s. $d=0$
$S=\varnothing$
$Q=V$
while $Q \neq \varnothing$
$u=\operatorname{Extract-Min}(Q) / / b a s e d$ on $u . d$
if $(u=g)$
return "success"
$S=S \cup\{u\}$
for each $v \in G . \operatorname{Adj}[u]$
if $v . d>=u . d+w(u, v)$
$v . d=u . d+w(u, v)$
$v . \pi=u$
return "fail"
$\operatorname{aStar}(V, E, w, s, g, h)$ for each $u \in V$
u. $f=\infty$ and $u . d=\infty$
$u . \pi=n i l$
s. $f=0$ and $s . d=0$
$S=\varnothing$
$Q=V$
while $Q \neq \varnothing$
$u=\operatorname{Extract-Min}(Q) / / b a s e d$ on $u . f$
if $(u=g)$
return "success"
$S=S \cup\{u\}$
for each $v \in G . \operatorname{Adj}[u]$
if $v . d>=u . d+w(u, v)$
$v . d=u . d+w(u, v)$
$v . \pi=u$
$v . f=v . d+h(v)$
return "fail"

BFS A* algorithm

```
\(\mathrm{BFS}(V, E, s, g)\)
for each \(u \in V-\{s\}\)
    \(u . d=\infty\)
    s. \(d=0\)
    \(Q=\varnothing\)
Enqueue( \(Q, s\) ) // FIFO Queue
step \(=0\)
while \(Q \neq \varnothing\)
    \(u=\) Dequeue \((Q) / / b a s e d\) on \(u\). \(d\)
    \(u . c=\) step
    step \(=\) step +1
    if ( u ! g )
        for each \(v \in G . \operatorname{Adj}[u]\)
            if \(v . d=\infty\)
            \(v . d=u . d+1\)
            Enqueue \((Q, v)\)
else
        break
```


How Many Steps: Value and Expand

BF: Value

A^{*} : h-values

4	3	1	2	3
3	2	0	1	2
4	3	2	1	2
5	4	3	3	4
6	5	4	3	5

A*: g-values

0	1			
1	2		6	
2	3	4	5	
3	4			

BF: Expand

0	2			
1	4		13	
3	6	9	11	
5	8		2	
7	10	12		

A*: Expand

0	1				
2	3		8		
4	5	6	7		

Programming Assignment: PA4C

Using BFS A* algorithm, define a function, search() that returns two tables:

- Value table that keeps track the minimum value from source to each cell, and
- Expand table that keeps track of which step each node was expanded.

A*: g-values

0	1			
1	2		6	
2	3	4	5	
3	4	x		

A*: Expand

0	1					
2	3			8		
4	5	6		7		

Programming Assignment: PA4D

Modify the search function so that it returns an additional table

- Action table that shows the shortest path as follows:

'>'	'V'	66	66	66	66
66	'V'	66	(*)	66	66
66	'>'	$' \gg$	' \wedge^{\prime}	66	66
6 '	6)	66	66	66	66
66	66	66	66	66	66

A*: g-values

Programming Project: PP4

- Implement Dijkstra Algorithm and A* Algorithm
- The map is the occupancy grid using eightneighbor connection. Each cell has a probability of occupancy.

0	0.2	0.8	0	0	0
0	0.2	0.8	0	0	0
0	0.2	0	0	0.8	0
0	0	0.2	0.8	0.8	0
0	0	0	0.2	0.8	0

- A skeleton code is given. You only need to provide implementations for the following three functions and the update (relax) step of the Dijkstra algorithm.

1. get_neighborhood: This function returns a vector of the neighbors of a given cell, considering the boundaries of the map.
2. get_edge_cost: This function calculates the cost of moving from a given cell to one of its neighbors. Note that if the occupancy probability of the neighbor is greater than or equal to 0.5 , then the cost is infinity. Otherwise, the cost is the distance between the two cells plus 2 times the occupancy probability of the neighbor.
3. get_heuristic: This function calculates the distance of a given cell to the goal cell.
