
1. ACTION (or prediction) update: the robot moves and estimates its
position through its proprioceptive sensors. During this step, the robot
uncertainty grows. This step uses the Total Probability formula to update
belief

2. PERCEPTION (or measurement) update: the robot makes an
observation using its exteroceptive sensors and correct its position by
opportunely combining its belief before the observation with the
probability of making exactly that observation. During this step, the robot
uncertainty shrinks. This step uses the Bayes Rule to update belief.

Recall: The two update steps in robot localization

𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1) ∗ 𝑏𝑒𝑙(𝑥𝑡−1)

𝑏𝑒𝑙(𝑥𝑡) = 𝜂 ⋅ 𝑝(𝑧𝑡|𝑥𝑡) ⋅ 𝑏𝑒𝑙(𝑥𝑡)

Recall: Markov versus Kalman localization

• Two approaches exist to represent the probability distribution and to
compute the Total Probability and Bayes Rule during the Action and
Perception phases

• Markov approach:

– The configuration space is divided into many cells. Each cell contains the
probability of the robot to be in that cell.

– The probability distribution of the sensors model is also discrete.

– During Action and Perception, all the cells are updated. Therefore, the
computational cost is very high.

• Kalman approach:

– The probability distribution of both the robot configuration and the sensor
model is assumed to be continuous and Gaussian!

– Need only to update mean value μ and covariance Σ. Therefore the
computational cost is very low!

Sample-based Localization

• Maintain multiple estimates of robot’s location

• Track possible robot positions, given all previous measurements

• Key idea: represent the belief that a robot is at a particular location by a

set of “samples”, or “particles”

Represent Bel(x) by set of N weighted, random samples, called particles:

where a sample, si , is of the form: <<xi, yi, i>, wi>

Here, <xi, yi, i> represents robot’s position (location and orientation)

wi represents a weight, where sum of all w’s is 1 (analogous to

discrete probability)

𝑆 = {𝑠𝑖|𝑖 = 1. . 𝑁}

Updating beliefs using Particle Filters (PF)

• As before, 2 models: Action (Motion) Model, Perception (Sensing) Model

• Robot Motion Model: PF computes new positions of samples that
approximate robot’s position after motion command.

– The new position of a sample xt
i is computed from p(xt|xt−1, ut−1) using

xt−1
i and ut−1

• Robot Perception Model: PF generates N new samples by randomly
drawing from previous sample set, with likelihood determined by w values.

– The corresponding weight (w value) is computed by wt
i = p(zt|xt

i) and then
normalized

Sampling-based

approximation

of position belief for

non-sensing robot Start

1. Algorithm particle_filter(St-1, ut-1, zt):

2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by wt-1

5. Sample from using and

6. Compute importance weight

7. Update normalization factor

8. Insert into new particle set

9. For

10. Normalize weight

Particle Filter Algorithm

𝑆𝑡 = ∅, 𝜂 = 0

𝑖 = 1…𝑛

𝑆𝑡 = 𝑆𝑡 ∪ {< 𝑥𝑡
𝑖 , 𝑤𝑡

𝑖 >}

𝜂 = 𝜂 + 𝑤𝑡
𝑖

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1) 𝑥𝑡−1
𝑗(𝑖) 𝑢𝑡−1

𝑤𝑡
𝑖 = 𝑝(𝑧𝑡|𝑥𝑡

𝑖)

𝑖 = 1…𝑛

𝑤𝑡
𝑖 = 𝑤𝑡

𝑖/𝜂

draw xi
t-1 from Bel(xt-1)

draw xi
t from p(xt | x

i
t-1,ut-1)

Importance factor for xi
t:

𝑤𝑡
𝑖 =

target distribution

proposal distribution

=
𝜂𝑝(𝑧𝑡|𝑥𝑡) 𝑝(𝑥𝑡|𝑥𝑡−1,𝑢𝑡−1)𝐵𝑒𝑙 (𝑥𝑡−1)𝑑𝑥𝑡−1

 𝑝(𝑥𝑡|𝑥𝑡−1,𝑢𝑡−1)𝐵𝑒𝑙 (𝑥𝑡−1)𝑑𝑥𝑡−1

∝ 𝑝(𝑧𝑡|𝑥𝑡)

𝐵𝑒𝑙(𝑥𝑡) = 𝜂𝑝(𝑧𝑡|𝑥𝑡)න𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)𝐵𝑒𝑙 (𝑥𝑡−1) 𝑑𝑥𝑡−1

Particle Filter Algorithm

Function Approximation

• Particle sets can be used to approximate functions

• The more particles fall into an interval, the higher the probability

of that interval

• How to draw samples from a function/distribution?

Rejection Sampling

• Let us assume that f(x) < a for all x

• Sample x from a uniform distribution

• Sample c from [0, a]

• If f(x) > c, then keep the sample x

• otherwise, reject the sample x

Importance Sampling Principle

• We can even use a different distribution g to generate samples

from f

• By introducing an importance weight w, we can account for the

“differences between g and f ”

• Importance weight w = f / g

• f is called target

• g is called proposal

Resampling

• Given: Set S of weighted samples {(xi, wi) | i = 1, 2, …}.

• Wanted : Random sample, where the probability of drawing xi

is given by wi.

• Typically done n times with replacement to generate new
sample set S’.

Importance Sampling with Resampling

Weighted samples After resampling

Particle Filters

𝑥

𝑝(𝑥)

𝐵𝑒𝑙(𝑥) ← 𝛼𝑝(𝑧|𝑥)𝐵𝑒𝑙−(𝑥)

𝑤 ← 𝛼𝑝(𝑧|𝑥)

Sensor Information: Importance Sampling

𝑤 =
𝐵𝑒𝑙(𝑥)

𝐵𝑒𝑙−(𝑥)

𝑝(𝑥)

𝑝(𝑧|𝑥)

𝑝(𝑥|𝑧)

𝑥

𝑥

𝑥

𝐵𝑒𝑙−(𝑥) ← න𝑝(𝑥|𝑢, 𝑥′)𝐵𝑒𝑙(𝑥′) d 𝑥 ′

Robot Motion

𝑝(𝑥)

𝑝(𝑥|𝑢)

𝑥

𝑥

Sensor Information: Importance Sampling

𝐵𝑒𝑙(𝑥) ← 𝛼𝑝(𝑧|𝑥)𝐵𝑒𝑙−(𝑥)

𝑤 ← 𝛼𝑝(𝑧|𝑥)
𝑤 =

𝐵𝑒𝑙(𝑥)

𝐵𝑒𝑙−(𝑥)

𝑝(𝑥)

𝑝(𝑧|𝑥)

𝑝(𝑥|𝑧)

𝑥

𝑥

𝑥

Robot Motion

𝐵𝑒𝑙−(𝑥) ← න𝑝(𝑥|𝑢, 𝑥′)𝐵𝑒𝑙(𝑥′) d 𝑥 ′

𝑝(𝑥)

𝑝(𝑥|𝑢)

𝑥

𝑥

The particle filter algorithm

1. Sample the next generation for particles using the

proposal distribution

2. Compute the importance weights:

weight = target distribution / proposal distribution

3. Resampling: “Replace unlikely samples by more likely

ones”

• Each particle is a potential pose of the robot

• Proposal distribution is the motion model of the robot

(prediction step)

• The observation model is used to compute the importance

weight (correction step)

The particle filter algorithm

A variant of the Bayes filter based on importance sampling

1. Algorithm systematic_resampling(S,n):

2.

3. For Generate cdf (cumulative distribution function)

4. 𝑐𝑖 = 𝑤1 + 𝑤2 +⋯+𝑤𝑖

5. Initialize threshold 0 < 𝑢1 ≤
1

𝑛

6. For Draw samples …

7. While () Skip until next threshold reached

8. 𝑐𝑖−1 < 𝑢𝑗 ≤ 𝑐𝑖

9. Insert

10. Increment threshold 𝑢𝑗 = 𝑢1 +
𝑗−1

𝑛

11. Return S’

Resampling Algorithm

𝑆′ = ∅, 𝑐0 = 0

𝑖 = 1…𝑛

𝑐𝑖 = 𝑐𝑖−1 + 𝑤𝑖

𝑢1~𝑈(0, 𝑛
−1], 𝑖 = 1

𝑗 = 1…𝑛

𝑢𝑗+1 = 𝑢𝑗 + 𝑛−1

𝑢𝑗 > 𝑐𝑖

𝑆′ = 𝑆′ ∪ < 𝑥𝑖 , 𝑛−1 >

𝑖 = 𝑖 + 1

Also called stochastic universal sampling

Resampling Algorithm: Example

n 1 2 3 4 5 6 7 8 9 10

w 0.10 0.15 0.05 0.25 0.15 0.05 0.06 0.04 0.10 0.05

ci 0.10 0.25 0.30 0.55 0.70 0.75 0.81 0.85 0.95 1.00

uj 0.02 0.12 0.22 0.32 0.42 0.52 0.62 0.72 .82 0.92

S x1 x2 x2 x4 x4 x4 x5 x6 x8 x9

𝑐𝑖 = 𝑤1 + 𝑤2 +⋯+𝑤𝑖

𝑐𝑖−1 < 𝑢𝑗 ≤ 𝑐𝑖

𝑢𝑗 = 𝑢1 +
𝑗 − 1

𝑛

𝑐0 = 0 0 < 𝑢1 ≤
1

𝑛

u 0.07 0.17 0.27 0.37 0.47 0.57 0.67 0.77 0.87 0.97

s x1 x2 x3 x4 x4 x5 x5 x7 x9 x10

Resampling Algorithm: Example

n 1 2 3 4 5 6 7 8 9 10

w 0.10 0.15 0.05 0.25 0.15 0.05 0.06 0.04 0.10 0.05

ci 0.10 0.25 0.30 0.55 0.70 0.75 0.81 0.85 0.95 1.00

uj 0.02 0.12 0.22 0.32 0.42 0.52 0.62 0.72 .82 0.92

S x1 x2 x2 x4 x4 x4

𝑐𝑖 = 𝑤1 + 𝑤2 +⋯+𝑤𝑖 𝑢𝑗 = 𝑢1 +
𝑗 − 1

𝑛

𝑐0 = 0 0 < 𝑢1 ≤
1

𝑛

𝑗 = 1 2 3 4 5 6 7 8 9 10

𝑖 = 1 2 2 4 4 4 5

𝑢1 = 0.02

Initially

𝑖 = 1

22

Particle Filter Example: Initial Distribution

Initially, robot doesn’t know where it is

23

After Incorporating 10 Ultrasound Scans

24

After Incorporating 65 Ultrasound Scans

Summary – Particle Filters (1/2)

• Particle filters are an implementation of recursive Bayesian

filtering

• They represent the posterior by a set of weighted samples

• They can model arbitrary and thus also non-Gaussian

distributions

• Proposal to draw new samples

• Weights are computed to account for the difference between

the proposal and the target

Summary – Particle Filters (2/2)

• In the context of localization, the particles are propagated

according to the motion model.

• They are then weighted according to the likelihood model

(likelihood of the observations).

• In a re-sampling step, new particles are drawn with a

probability proportional to the likelihood of the observation.

• This leads to one of the most popular approaches to mobile

robot localization

	Slide 1: Recall: The two update steps in robot localization
	Slide 2: Recall: Markov versus Kalman localization
	Slide 3: Sample-based Localization
	Slide 4: Updating beliefs using Particle Filters (PF)
	Slide 5: Particle Filter Algorithm
	Slide 6: Particle Filter Algorithm
	Slide 7: Function Approximation
	Slide 8: Rejection Sampling
	Slide 9: Importance Sampling Principle
	Slide 10: Resampling
	Slide 11: Importance Sampling with Resampling
	Slide 12: Particle Filters
	Slide 13: Sensor Information: Importance Sampling
	Slide 14: Robot Motion
	Slide 15: Sensor Information: Importance Sampling
	Slide 16: Robot Motion
	Slide 17
	Slide 18
	Slide 19: Resampling Algorithm
	Slide 20: Resampling Algorithm: Example
	Slide 21: Resampling Algorithm: Example
	Slide 22: Particle Filter Example: Initial Distribution
	Slide 23: After Incorporating 10 Ultrasound Scans
	Slide 24: After Incorporating 65 Ultrasound Scans
	Slide 25
	Slide 26

