Recall: Programming Assignment 3 (PA2A)

- Write a program that will iteratively prediction and correction based on the location measurements and inferred motions shown below.

```
def predict(mean1, var1, mean2, var2):
    new_mean = mean1 + mean2
    new_var = var1 + var2
    return [new_mean, new_var]
def correct(mean1, var1, mean2, var2):
    new_mean = (var2 * mean1 + var1 * mean2) / (var1 + var2)
    new_var = 1/(1/var1 + 1/var 2)
    return [new_mean, new_var]
measurements = [5., 6., 7., 9., 10.]
motion = [0., 1., 1., 2., 1.]
measurement_sig = 4.
motion_sig = 2.
mu = 4
sig = 10000
#Please print out ONLY the final values of the mean
#and the variance in a list [mu, sig].
# Insert code here
```


Kalman Filter Prediction Update in 2D

$$
X_{t}=\left(x_{t}, \dot{x}_{t}\right)^{T}
$$

$$
x_{t}=x_{t-1}+\dot{x}_{t-1} \times \Delta t+\frac{1}{2} \ddot{x}_{t-1} \times \Delta t^{2}
$$

$$
\dot{x}_{t}=\dot{x}_{t-1}+\ddot{x}_{t-1} \times \Delta t \quad \ddot{x}_{t}=\alpha
$$

$$
X_{t}=A_{t} X_{t-1}+B_{t} u_{t}+\varepsilon_{t}
$$

$$
z_{t}=C_{t} X_{t}+\delta_{t}
$$

$$
A_{t}=\left(\begin{array}{cc}
1 & \Delta t \\
0 & 1
\end{array}\right) \quad B_{t}=\binom{\Delta t^{2} / 2}{\Delta t} \quad u_{t}=(\alpha)
$$

$$
C_{t}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\overline{\operatorname{bel}}\left(X_{t}\right)=\left\{\begin{array}{l}
\bar{\mu}_{t}=A_{t} \mu_{t-1}+B_{t} u_{t} \\
\bar{\Sigma}_{t}=A_{t} \Sigma_{t-1} A_{t}^{T}+R_{t}
\end{array}\right.
$$

Kalman Filter Correction Update in 2D

$$
X_{t}=\left(x_{t}, \dot{x}_{t}\right)^{T}
$$

$$
x_{t}=x_{t-1}+\dot{x}_{t-1} \times \Delta t+\frac{1}{2} \ddot{x}_{t-1} \times \Delta t^{2}
$$

$$
\dot{x}_{t}=\dot{x}_{t-1}+\ddot{x}_{t-1} \times \Delta t \quad \ddot{x}_{t}=\alpha
$$

$$
X_{t}=A_{t} X_{t-1}+B_{t} u_{t}+\varepsilon_{t}
$$

$$
z_{t}=C_{t} X_{t}+\delta_{t}
$$

$$
A_{t}=\left(\begin{array}{cc}
1 & \Delta t \\
0 & 1
\end{array}\right)
$$

$$
B_{t}=\binom{\Delta t^{2} / 2}{\Delta t}
$$

$$
u_{t}=(\alpha)
$$

$$
C_{t}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\operatorname{bel}\left(x_{t}\right)=\left\{\begin{array}{c}
\mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-C_{t} \bar{\mu}_{t}\right) \\
\Sigma_{t}=\left(I-K_{t} C_{t}\right) \bar{\Sigma}_{t}
\end{array} \quad \text { with } \quad K_{t}=\bar{\Sigma}_{t} C_{t}^{T}\left(C_{t} \bar{\Sigma}_{t} C_{t}^{T}+Q_{t}\right)^{-1}\right.
$$

Kalman Filter Updates in 2D

$$
X_{t}=A_{t} X_{t-1}+B_{t} u_{t}+\varepsilon_{t}
$$

$$
z_{t}=C_{t} X_{t}+\delta_{t}
$$

$$
A_{t}=\left(\begin{array}{cc}
1 & \Delta t \\
0 & 1
\end{array}\right) \quad B_{t}=\binom{\Delta t^{2} / 2}{\Delta t} \quad u_{t}=(\alpha)
$$

$$
C_{t}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Prediction

$$
\overline{\operatorname{bel}}\left(X_{t}\right)=\left\{\begin{array}{l}
\bar{\mu}_{t}=A_{t} \mu_{t-1}+B_{t} u_{t} \\
\bar{\Sigma}_{t}=A_{t} \Sigma_{t-1} A_{t}^{T}+R_{t}
\end{array}\right.
$$

Correction

$$
\operatorname{bel}\left(x_{t}\right)=\left\{\begin{array}{c}
\mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-C_{t} \bar{\mu}_{t}\right) \\
\Sigma_{t}=\left(I-K_{t} C_{t}\right) \bar{\Sigma}_{t}
\end{array} \quad \text { with } \quad K_{t}=\bar{\Sigma}_{t} C_{t}^{T}\left(C_{t} \bar{\Sigma}_{t} C_{t}^{T}+Q_{t}\right)^{-1}\right.
$$

Prediction Update

```
# Mean and standard devition of prior (or intial) state
x_mu = 4000 # distance
v_mu = 280 # speed
x_sig = 10.0 # uncetainty in distance
v_sig = 10.0 # uncertainty in speed
# state vector and covariance matrix
X = np.array([[x mu], [v mu]])
COV = np.array([[]_x_sig**
dt=1.0
# Matrixes A, B, u_t
A = np.array([[1.0, dt], [0, 1.0]])
B = np.array([[0.5*dt**2], [dt]])
u_t = np.array([[ac]])
    At}=(\begin{array}{cc}{1}&{\Deltat}\\{0}&{1}\end{array}
    ut}=(\alpha
p_x_sig = 20.0 # uncetainly in prediting distance
p_v_sig = 5 # uncertainty in predicting speed
# Covariance matrix in predicting
R_t = np.array([[p_x_sig**2, 0], [0, p_v_sig**2]])
\[
\overline{\operatorname{bel}}\left(X_{t}\right)=\left\{\begin{array}{l}
\bar{\mu}_{t}=A_{t} \mu_{t-1}+B_{t} u_{t} \\
\bar{\Sigma}_{t}=A_{t} \Sigma_{t-1} A_{t}^{T}+R_{t}
\end{array}\right.
\]
```

```
def predict2D(X, COV):
```

def predict2D(X, COV):
X_bar = A.dot(X) + B.dot(u_t)
COVV_bar = A.dot(COV).dot(A.T) + R_t
return X_bar, COV_bar
X_bar, COV_bar = predict2D(X, COV)

```

\section*{Correction Update}
```


the predicted state and coveraince matrix

x_bar = np.array([[4281.0], [282.0]])
COV_bar = np.array([[600.0, 100.0], [100.0, 125.0]])

```
```


measurements and Uncertainties

```
\(x^{\prime}\) _obs \(=4260\)
v_obs= 282
obs_x_sig \(=25\)
obs_v_sig \(=6\)
\[
C_{t}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\]
\# measurement mean vector and covarance matrix
\(z_{-} t=n p . \operatorname{array}([[4260.0],[282.0]])\)
Q_t \(=\) np.array ([[obs_x_sig**2, 0], [0, obs_v_sig**2]])
\# Matrix C
\(\mathrm{C}=\mathrm{np}\). identity (2)
\[
z_{t}=C_{t} X_{t}+\delta_{t}
\]
\# measurement mean vector and covarance matrix
z_t = np.array([[4260.0], [282.0]])
Q_t \(=\) np.array ([[obs_x_sig**2, 0], [0, obs_v_sig**2]])
\# Matrix C
\(\mathrm{C}=\mathrm{np}\). identity(2)
\(\underset{\substack{\text { [ [4271.28655361] } \\[281.59620777]]}}{ }\)

COV
```

[[[289.09066631 12.01762585]
[12.01762585 27.5203632]]

```
x, Cov = correct2D(X_bar, Cov_bar, z_t)
\[
\operatorname{bel}\left(x_{t}\right)=\left\{\begin{array}{c}
\mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-C_{t} \bar{\mu}_{t}\right) \\
\Sigma_{t}=\left(I-K_{t} C_{t}\right) \bar{\Sigma}_{t}
\end{array} \quad \text { with } \quad K_{t}=\bar{\Sigma}_{t} C_{t}^{T}\left(C_{t} \bar{\Sigma}_{t} C_{t}^{T}+Q_{t}\right)^{-1}\right.
\]

\section*{Programming Assignment 4 (PA2B)}
- Complete the following program that will iteratively predict and correct based on the distance and speed measurements and a given initial state and acceleration by inserting your code in the specified spaces below.

\section*{def predict2D(X, COV) :}

X_bar \(=A \cdot d o t(X)+B \cdot d o t(u t)\)
\(\operatorname{cov}\) bar \(=\mathrm{A} \cdot \operatorname{dot}(\mathrm{COV}) \cdot \operatorname{dot}(\mathrm{A} \cdot \mathrm{T})+\mathrm{R} \mathrm{t}\)
retūrn X_bar, COV_bar
def correct2D(X_bar, COV bar, z t):
\(S=C \cdot d o t(C O V\) bar \() \cdot \operatorname{dot}(C \cdot T)+Q \_t\)
\(K_{-} t=C O V \_b a r \cdot \operatorname{dot}(C \cdot T) \cdot \operatorname{dot}(\operatorname{inv}(S))\)
\(X^{-}=X_{-}\)bar \({ }^{-}+K_{-} t \cdot \operatorname{dot}\left(\left(z_{-} t-C \cdot d o t\left(X \_b a r\right)\right)\right)\)
COV \(=\) (np.identity (2) \(\left.-K_{\_} t \cdot \operatorname{dot}(C)\right) \cdot \operatorname{dot}\left(C O V \_b a r\right)\) return \(\mathrm{X}, \mathrm{COV}\)
for \(i\) in range(len(x_obses)):
X_bar, COV_bar = predict2D (X, COV)
z_t = np.array([[x_obses[i]], [v_obses[i]]])
X, COV \(=\) correct \(2 \mathrm{D}\left(\mathrm{X} \_\right.\)bar, COV _bar, \(\left.z_{-} \mathrm{t}\right)\)
print (X)
print (COV)
```


Mean and standard devition of intial) state

x_mu = 4000 \# distance
v_mu = 280 \# speed
x_sig = 10.0 \# uncetainty in distance
v_sig = 10.0 \# uncertainty in speed

measurements and Uncertainties in measuring

x_obses = np.array([4260, 4550, 4860, 5110]) \# distances
v_obses = np.array([282, 285, 286, 290]) \# speeds
obs x_sig = 25 \# uncetainty in distance measuring
obs_v_sig = 6 \# uncertainty in speed measuring
dt = 1.0 \# time interval to update
ac = 2.0 \# Acceleration
p_x_sig = 20.0 \# uncetainty in prediting distance
p_v_sig = 5 \# uncertainty in predicting speed

initial state and covariance matrix

insert your code here

Matrixes A, B, C, u_t

insert your code here

Covariance matrix R_t in predicting

Insert your code here

```
\# Covariance matrix Q_t in measuring
\# Insert your code here

\section*{Kalman Filter Prediction Update in 4D}
\[
X_{t}=\left(x_{t}, y_{t}, \dot{x}_{t}, \dot{y}_{t}\right)^{T}
\]
\(x_{t}=x_{t-1}+\dot{x}_{t-1} \times \Delta t+\frac{1}{2} \ddot{x}_{t-1} \times \Delta t^{2}\)
\[
y_{t}=y_{t-1}+\dot{y}_{t-1} \times \Delta t+\frac{1}{2} \ddot{y}_{t-1} \times \Delta t^{2}
\]
\[
\dot{x}_{t}=\dot{x}_{t-1}+\ddot{x}_{t-1} \times \Delta t \quad \ddot{x}_{t}=\alpha
\]
\[
\dot{y}_{t}=\dot{y}_{t-1}+\ddot{y}_{t-1} \times \Delta t \quad \ddot{y}_{t}=\beta
\]
\[
X_{t}=A_{t} X_{t-1}+B_{t} u_{t}+\varepsilon_{t} \quad z_{t}=C_{t} X_{t}+\delta_{t} \quad u_{t}=\binom{\alpha}{\beta}
\]
\[
A_{t}=\left(\begin{array}{cccc}
1 & 0 & \Delta t & 0 \\
0 & 1 & 0 & \Delta t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]
\[
B_{t}=\left(\begin{array}{cc}
\Delta t^{2} / 2 & 0 \\
0 & \Delta t^{2} / 2 \\
\Delta t & 0 \\
0 & \Delta t
\end{array}\right)
\]
\[
C_{t}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]
\[
\overline{\operatorname{bel}}\left(x_{t}\right)=\left\{\begin{array}{l}
\bar{\mu}_{t}=A_{t} \mu_{t-1}+B_{t} u_{t} \\
\bar{\Sigma}_{t}=A_{t} \Sigma_{t-1} A_{t}^{T}+R_{t}
\end{array}\right.
\]

\section*{Kalman Filter Correction Update in 4D}
\[
X_{t}=\left(x_{t}, y_{t}, \dot{x}_{t}, \dot{y}_{t}\right)^{T}
\]
\(x_{t}=x_{t-1}+\dot{x}_{t-1} \times \Delta t+\frac{1}{2} \ddot{x}_{t-1} \times \Delta t^{2}\)
\[
y_{t}=y_{t-1}+\dot{y}_{t-1} \times \Delta t+\frac{1}{2} \ddot{y}_{t-1} \times \Delta t^{2}
\]
\[
\dot{x}_{t}=\dot{x}_{t-1}+\ddot{x}_{t-1} \times \Delta t \quad \ddot{x}_{t}=\alpha
\]
\[
\dot{y}_{t}=\dot{y}_{t-1}+\ddot{y}_{t-1} \times \Delta t \quad \ddot{y}_{t}=\beta
\]
\[
X_{t}=A_{t} X_{t-1}+B_{t} u_{t}+\varepsilon_{t} \quad z_{t}=C_{t} X_{t}+\delta_{t} \quad u_{t}=\binom{\alpha}{\beta}
\]
\[
A_{t}=\left(\begin{array}{cccc}
1 & 0 & \Delta t & 0 \\
0 & 1 & 0 & \Delta t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]
\[
B_{t}=\left(\begin{array}{cc}
\Delta t^{2} / 2 & 0 \\
0 & \Delta t^{2} / 2 \\
\Delta t & 0 \\
0 & \Delta t
\end{array}\right) .
\]
\[
C_{t}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]
\(\operatorname{bel}\left(x_{t}\right)=\left\{\begin{array}{c}\mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-C_{t} \bar{\mu}_{t}\right) \\ \Sigma_{t}=\left(I-K_{t} C_{t}\right) \bar{\Sigma}_{t}\end{array} \quad\right.\) with \(\quad K_{t}=\bar{\Sigma}_{t} C_{t}^{T}\left(C_{t} \bar{\Sigma}_{t} C_{t}^{T}+Q_{t}\right)^{-1}\)

\section*{Programming Project \#2: Kalman Localization in 4D PP2-KalmanFilter4D.py}

\section*{- Write a program that will iteratively predict and correct based on the distance and speed measurements and a given initial state and acceleration in 4D.}
```


Mean and standard deviation of initial state in x-direction

x_mu = 4000 \# distance
xv_mu = 280 \# speed
x_sig = 10.0 \# uncetainty in distance
xv_sig = 10.0 \# uncertainty in speed

Mean and standard deviation of initial state in y-direction

y_mu = 3000 \# distance
yv_mu = 180 \# speed
y_sig = 10.0 \# uncetainty in distance
yv_sig = 10.0 \# uncertainty in speed

measurements and uncertainties in measuring in x-direction

x_obses = np.array([4260, 4550, 4860, 5110]) \# distances
x\overline{v}_obses = np.array([282, 285, 286, 290]) \# speeds

```
\# measurements and uncertainties in measuring in \(y\)-direction
y_obses \(=\) np.array \(([3181,3366,3552,3742])\) \# distances
yv_obses \(=\) np.array \(([184,186,190,194])\) \# speeds
obs_x_sig \(=25\) \# uncetainty in distance measuring in \(x\)-direction
obs_xv_sig \(=6\) \# uncertainty in speed measuring in \(x\)-direction
obs_y_sig \(=25\) \# uncetainty in distance measuring in y-direction
obs_yv_sig \(=6\) \# uncertainty in speed measuring in y-direction
\(d t=1.0 \quad \#\) time interval to update
\(a c x=2.0 \quad\) \# Acceleration in \(x\)-direction
acy \(=3.0 \quad\) \# Acceleration in \(y\)-direction
```

p_x_sig $=20.0$ \# uncetainty in prediting distance in x-direction
$\mathrm{p}_{\mathrm{X}} \mathrm{X} \mathrm{v}$ _sig $=5$ \# uncertainty in predicting speed in x -direction
p_y_sig $=20.0$ \# uncetainty in prediting distance in y-direction
p_yv_sig $=5 \quad$ \# uncertainty in predicting speed in y-direction

```
```


Enter your code below to provide

(1) initial state: X and covariance matrix: COV

(2) Matrixes: A, B, C, u_t

(3) Covariance matrix in predicting: R_t

(4) Covariance matrix in measuring: Q_t

Do not add or change any code below

def predict4D(X, COV):
X_bar = A.dot(X) + B.dot(u_t)
COV_bar = A.dot(COV).dot(A.T) + R_t
return X_bar, COV_bar
def correct4D(X_bar, COV_bar, z_t):
S = C.dot(COVV_bar).döt (C.T) +Q_t
K t = COV bar. dot(C.T).dot(inv (S))
X-}=\mp@subsup{X}{_}{\prime}bar + + K_t.dot((z_t - C.dot(X_bar))) (%
COV = (np.identity(4) - K_t.dot(C)).dot(COV_bar)
return X, COV
for i in range(len(x_obses)):
X_bar, COV_bar = predict4D(X, COV)
z_t = np.arrray([[x_obses[i]], [y_obses[i]], [xv_obses[i]], [yv_obses[i]]])
X,}\textrm{COV}=\mathrm{ correct4D(X_bar, COV_bar, z_t)
print (X)
print (COV)

```

\section*{Nonlinear Dynamic Systems}
- Most realistic robotic problems involve nonlinear functions
\[
x_{t}=g\left(u_{t}, x_{t-1}\right)
\]
\[
z_{t}=h\left(x_{t}\right)
\]

\section*{Linearity Assumption Revisited}




\section*{Non-linear Function}




\section*{EKF Linearization (1)}




\section*{EKF Linearization (2)}




\section*{EKF Linearization (3)}




\section*{EKF Linearization: First Order Taylor Series Expansion}
- Prediction:
\[
\begin{aligned}
& g\left(u_{t}, x_{t-1}\right) \approx g\left(u_{t}, \mu_{t-1}\right)+\frac{\partial g\left(u_{t}, \mu_{t-1}\right)}{\partial x_{t-1}}\left(x_{t-1}-\mu_{t-1}\right) \\
& g\left(u_{t}, x_{t-1}\right) \approx g\left(u_{t}, \mu_{t-1}\right)+G_{t}\left(x_{t-1}-\mu_{t-1}\right)
\end{aligned}
\]
- Correction:
\[
\begin{aligned}
& h\left(x_{t}\right) \approx h\left(\bar{\mu}_{t}\right)+\frac{\partial h\left(\bar{\mu}_{t}\right)}{\partial x_{t}}\left(x_{t}-\bar{\mu}_{t}\right) \\
& h\left(x_{t}\right) \approx h\left(\bar{\mu}_{t}\right)+H_{t}\left(x_{t}-\bar{\mu}_{t}\right)
\end{aligned}
\]
\[
\begin{aligned}
& x_{t}=g\left(u_{t}, x_{t-1}\right) \\
& z_{t}=h\left(x_{t}\right)
\end{aligned}
\]
\[
\begin{aligned}
& x_{t}=A_{t} x_{t-1}+B_{t} u_{t}+\varepsilon_{t} \\
& z_{t}=C_{t} x_{t}+\delta_{t}
\end{aligned}
\]
1. Extended_Kalman_filter \(\left(\mu_{t-1}, \Sigma_{t-1}, u_{t} z_{t}\right)\) :
2. Prediction:
\(\begin{array}{llll}\text { 3. } & \bar{\mu}_{t}=g\left(u_{t}, \mu_{t-1}\right) & \longleftarrow & \bar{\mu}_{t}=A_{t} \mu_{t-1}+B_{t} u_{t} \\ \text { 4. } & \bar{\Sigma}_{t}=G_{t} \Sigma_{t-1} G_{t}^{T}+R_{t} & \longleftarrow & \bar{\Sigma}_{t}=A_{t} \Sigma_{t-1} A_{t}^{T}+R_{t}\end{array}\)
5. Correction:
6. \(K_{t}=\bar{\Sigma}_{t} H_{t}^{T}\left(H_{t} \bar{\Sigma}_{t} H_{t}^{T}+Q_{t}\right)^{-1} \longleftarrow K_{t}=\bar{\Sigma}_{t} C_{t}^{T}\left(C_{t} \bar{\Sigma}_{t} C_{t}^{T}+Q_{t}\right)^{-1}\)
7. \(\mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-h\left(\bar{\mu}_{t}\right)\right) \longleftarrow \mu_{t}=\bar{\mu}_{t}+K_{t}\left(z_{t}-C_{t} \bar{\mu}_{t}\right)\)
8. \(\Sigma_{t}=\left(I-K_{t} H_{t}\right) \bar{\Sigma}_{t}\)
\(\longleftarrow \quad \Sigma_{t}=\left(I-K_{t} C_{t}\right) \bar{\Sigma}_{t}\)
9. Return \(\mu_{t}, \Sigma_{t}\)
\[
H_{t}=\frac{\partial h\left(\bar{\mu}_{t}\right)}{\partial x_{t}}
\]
\[
G_{t}=\frac{\partial g\left(u_{t}, \mu_{t-1}\right)}{\partial x_{t-1}}
\]

\section*{Localization}
"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities."
[Cox '91]
- Given
- Map of the environment.
- Sequence of sensor measurements.
- Wanted
-Estimate of the robot's position.
- Problem classes
- Position tracking
- Global localization
-Kidnapped robot problem (recovery)```

