
1. ACTION (or prediction) update: the robot moves and estimates its
position through its proprioceptive sensors. During this step, the robot
uncertainty grows. This step uses the Total Probability formula to update
belief

2. PERCEPTION (or measurement) update: the robot makes an
observation using its exteroceptive sensors and correct its position by
opportunely combining its belief before the observation with the
probability of making exactly that observation. During this step, the robot
uncertainty shrinks. This step uses the Bayes Rule to update belief.

Recall: The two update steps in robot localization

𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1) ∗ 𝑏𝑒𝑙(𝑥𝑡−1)

𝑏𝑒𝑙(𝑥𝑡) = 𝜂 ⋅ 𝑝(𝑧𝑡|𝑥𝑡) ⋅ 𝑏𝑒𝑙(𝑥𝑡)

Recall: Markov versus Kalman localization

• Two approaches exist to represent the probability distribution and to
compute the Total Probability and Bayes Rule during the Action and
Perception phases

• Markov approach:

– The configuration space is divided into many cells. Each cell contains the
probability of the robot to be in that cell.

– The probability distribution of the sensors model is also discrete.

– During Action and Perception, all the cells are updated. Therefore, the
computational cost is very high.

• Kalman approach:

– The probability distribution of both the robot configuration and the sensor
model is assumed to be continuous and Gaussian!

– Need only to update mean value μ and covariance Σ. Therefore the
computational cost is very low!

Gaussian (Normal) Distribution: Univariate

𝑋~𝑁(𝜇, 𝜎2):

𝑝(𝑥) =
1

2𝜋𝜎
𝑒
−
1
2
(𝑥−𝜇)2

𝜎2

Univariate

𝜇 = 𝐸(𝑋)

𝜎2 = 𝐸((𝑋 − 𝜇)2)

• 𝜇: Mean

• 𝜎2: Variance

• 𝜎: Standard Deviation

m 𝜇 + 𝜎 𝜇 + 2𝜎 𝜇 + 3𝜎𝜇 − 𝜎𝜇 − 2𝜎𝜇 − 3𝜎

Gaussian (Normal) Distribution: Multivariate

𝑿 = (𝑋1, . . 𝑋𝑘)
𝑻 ~Ν(𝛍, 𝚺):

𝑝(𝐱) =
1

(2𝜋)1/2 𝚺 1/2
𝑒−

1
2
(𝐱−𝛍)𝑇𝚺−1(𝐱−𝛍)

Multivariate

𝜇 = 𝜇1, … , 𝜇𝑘
𝑇 = (𝐸 𝑋1 , … , 𝐸 𝑋𝑘)𝑇

Σ𝑖,𝑗 = 𝐸((𝑋𝑖−𝜇𝑖)(𝑋𝑗 − 𝜇𝑗))

Σ𝑖,𝑖 = 𝜎𝑖
2 = 𝐸((𝑋𝑖−𝜇𝑖)

2)

• 𝜇: Mean vector

• Σ𝑖,𝑗: Covariance (𝑖 ≠ 𝑗)

• Σ𝑖,𝑖 = 𝜎𝑖
2: Variance

• Σ: Covariance matrix Σ = Σ𝑖,𝑗 𝑘×𝑘

ቋ
𝑋~𝑁(𝜇, 𝜎2)

𝑌 = 𝑎𝑋 + 𝑏
⇒ 𝑌~𝑁(𝑎𝜇 + 𝑏, 𝑎2𝜎2)

Properties of Gaussians

ቋ
𝑋1~𝑁(𝜇1, 𝜎1

2)

𝑋2~𝑁(𝜇2, 𝜎2
2)

⇒ 𝑃 𝑋1 𝑃 𝑋2 ~𝑁
𝜎2

2

𝜎12 + 𝜎22
𝜇1 +

𝜎1
2

𝜎12 + 𝜎22
𝜇2,

1

𝜎1−2 + 𝜎2−2

ቋ
𝑋~𝑁(𝜇, Σ)

𝑌 = 𝐴𝑋 + 𝐵
⇒ 𝑌~𝑁(𝐴𝜇 + 𝐵, 𝐴Σ𝐴𝑇)

ൠ
𝑋1~𝑁(𝜇1, Σ1)
𝑋2~𝑁(𝜇2, Σ2)

⇒ 𝑃 𝑋1 𝑃 𝑋2 ~𝑁
Σ2

Σ1 + Σ2
𝜇1 +

Σ1
Σ1 + Σ2

𝜇2,
1

Σ1
−1 + Σ2

−1

• We stay in the “Gaussian world” as long as we start with Gaussians and
perform only linear transformations.

Multivariate Gaussians

Univariate

• The state transition probability must be a linear function in
its arguments with added Gaussian noise.

–𝑥𝑡 and 𝑥𝑡−1 are state vectors, and

–𝑢𝑡 is the control vector at time

• The measurement probability must be a linear function in its
arguments with added Gaussian noise

6

Discrete Kalman Filter

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 휀𝑡

𝑧𝑡 = 𝐶𝑡𝑥𝑡 + 𝛿𝑡

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)

𝑝(𝑧𝑡|𝑥𝑡)

7

Components of a Kalman Filter

휀𝑡

Matrix (n×n) that describes how the state evolves from t-1 to t
without controls or noise.

𝐴𝑡

Matrix (n×m) that describes how the control ut changes the
state from t-1 to t.

𝐵𝑡

Matrix (k×n) that describes how to map the state xt to an
observation zt.

𝐶𝑡

𝛿𝑡

Random variables representing the process and measurement
noise that are assumed to be independent and normally
distributed with covariance Rt and Qt respectively.

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 휀𝑡

𝑧𝑡 = 𝐶𝑡𝑥𝑡 + 𝛿𝑡

• Initial belief is normally distributed:

8

𝑏𝑒𝑙(𝑥0) = 𝑁 𝑥0; 𝜇0, Σ0

Linear Gaussian Systems: Initialization

State mean matrix (n × 1).𝜇

State covariance matrix (n × n)Σ

9

• Dynamics are linear function of state and control plus additive
noise:

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 휀𝑡

Linear Gaussian Systems: Dynamics

𝑏𝑒𝑙(𝑥𝑡) = ൝
ǉ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

Σ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
𝑇 + 𝑅𝑡

𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1) ∗ 𝑏𝑒𝑙(𝑥𝑡−1)

ACTION (or prediction) update

Total Probability formula

10

• Observations are linear function of state plus additive noise:

𝑧𝑡 = 𝐶𝑡𝑥𝑡 + 𝛿𝑡

Linear Gaussian Systems: Observations

𝑏𝑒𝑙(𝑥𝑡) = ൝
𝜇𝑡 = ǉ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ǉ𝜇𝑡)

Σ𝑡 = (𝐼 − 𝐾𝑡𝐶𝑡)Σ𝑡

Where 𝐾𝑡 = Σ𝑡𝐶𝑡
𝑇(𝐶𝑡Σ𝑡𝐶𝑡

𝑇 + 𝑄𝑡)
−1 called Kalman Gain

PERCEPTION (or correction) update 𝑏𝑒𝑙(𝑥𝑡) = 𝜂 ⋅ 𝑝(𝑧𝑡|𝑥𝑡) ⋅ 𝑏𝑒𝑙(𝑥𝑡)

Bayes Rule

11

Kalman Filter Algorithm

1. Algorithm Kalman_filter(mt-1,St-1, ut, zt):

2. Prediction:

3.

4.

5. Correction:

6.

7.

8.

9. Return mt,St

𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

Σ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
𝑇 + 𝑅𝑡

𝐾𝑡 = Σ𝑡𝐶𝑡
𝑇(𝐶𝑡Σ𝑡𝐶𝑡

𝑇 + 𝑄𝑡)
−1

𝜇𝑡 = 𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡𝜇𝑡)

Σ𝑡 = (𝐼 − 𝐾𝑡𝐶𝑡)Σ𝑡

If 𝑅𝑡 → 0, Then the correction updates

are mostly ignored.

If 𝑄𝑡 → 0, Then 𝐾𝑡 → 1.

Adjust primarily with the corrections

If 𝑄𝑡 → 𝑙𝑎𝑟𝑔𝑒, Then 𝐾𝑡 → 0.

Adjust primarily with the prediction

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 휀𝑡

𝑧𝑡 = 𝐶𝑡𝑥𝑡 + 𝛿𝑡

12

Kalman Filter Prediction Update in 1D

𝑏𝑒𝑙(𝑥𝑡) = ൝
ǉ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

Σ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
𝑇 + 𝑅𝑡

𝑏𝑒𝑙(𝑥𝑡) = ൝
ǉ𝜇𝑡 = 𝑎𝑡𝜇𝑡−1 + 𝑏𝑡𝑢𝑡
ǉ𝜎𝑡
2 = 𝑎𝑡

2𝜎𝑡−1
2 + 𝜎𝑎𝑐𝑡,𝑡

2𝑥𝑡 = 𝑎𝑡𝑥𝑡−1 + 𝑏𝑡𝑢𝑡 + 휀𝑡

𝑧𝑡 = 𝑐𝑡𝑥𝑡 + 𝛿𝑡

13

Kalman Filter Correction Update in 1D

𝑏𝑒𝑙(𝑥𝑡) = ൝
𝜇𝑡 = ǉ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ǉ𝜇𝑡)

Σ𝑡 = (𝐼 − 𝐾𝑡𝐶𝑡)Σ𝑡
with 𝐾𝑡 = Σ𝑡𝐶𝑡

𝑇(𝐶𝑡Σ𝑡𝐶𝑡
𝑇 + 𝑄𝑡)

−1

𝑏𝑒𝑙(𝑥𝑡) = ൝
𝜇𝑡 = ǉ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − ǉ𝜇𝑡)

𝜎𝑡
2 = (1 − 𝐾𝑡) ǉ𝜎𝑡

2 with 𝐾𝑡 =
ǉ𝜎𝑡
2

ǉ𝜎𝑡
2 + ǉ𝜎𝑜𝑏𝑠,𝑡

2

14

The Prediction-Correction-Cycle

𝑏𝑒𝑙(𝑥𝑡) = ൝
ǉ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

Σ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
𝑇 + 𝑅𝑡

𝑏𝑒𝑙(𝑥𝑡) = ൝
ǉ𝜇𝑡 = 𝑎𝑡𝜇𝑡−1 + 𝑏𝑡𝑢𝑡
ǉ𝜎𝑡
2 = 𝑎𝑡

2𝜎𝑡−1
2 + 𝜎𝑎𝑐𝑡,𝑡

2

Prediction

15

The Prediction-Correction-Cycle

𝑏𝑒𝑙(𝑥𝑡) = ൝
𝜇𝑡 = ǉ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ǉ𝜇𝑡)

Σ𝑡 = (𝐼 − 𝐾𝑡𝐶𝑡)Σ𝑡
, 𝐾𝑡 = Σ𝑡𝐶𝑡

𝑇(𝐶𝑡Σ𝑡𝐶𝑡
𝑇 + 𝑄𝑡)

−1

𝑏𝑒𝑙(𝑥𝑡) = ൝
𝜇𝑡 = ǉ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − ǉ𝜇𝑡)

𝜎𝑡
2 = (1 − 𝐾𝑡) ǉ𝜎𝑡

2 , 𝐾𝑡 =
ǉ𝜎𝑡
2

ǉ𝜎𝑡
2 + ǉ𝜎𝑜𝑏𝑠,𝑡

2

Correction

16

The Prediction-Correction-Cycle

Correction

Prediction

𝑏𝑒𝑙(𝑥𝑡) = ൝
𝜇𝑡 = ǉ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ǉ𝜇𝑡)

Σ𝑡 = (𝐼 − 𝐾𝑡𝐶𝑡)Σ𝑡
, 𝐾𝑡 = Σ𝑡𝐶𝑡

𝑇(𝐶𝑡Σ𝑡𝐶𝑡
𝑇 + 𝑄𝑡)

−1

𝑏𝑒𝑙(𝑥𝑡) = ൝
𝜇𝑡 = ǉ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − ǉ𝜇𝑡)

𝜎𝑡
2 = (1 − 𝐾𝑡) ǉ𝜎𝑡

2 , 𝐾𝑡 =
ǉ𝜎𝑡
2

ǉ𝜎𝑡
2 + ǉ𝜎𝑜𝑏𝑠,𝑡

2

𝑏𝑒𝑙(𝑥𝑡) = ൝
ǉ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

Σ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
𝑇 + 𝑅𝑡

𝑏𝑒𝑙(𝑥𝑡) = ൝
ǉ𝜇𝑡 = 𝑎𝑡𝜇𝑡−1 + 𝑏𝑡𝑢𝑡
ǉ𝜎𝑡
2 = 𝑎𝑡

2𝜎𝑡−1
2 + 𝜎𝑎𝑐𝑡,𝑡

2

17

Kalman Filter Updates in 1D: Example

𝑏𝑒𝑙(𝑥𝑡) = ൝
ǉ𝜇𝑡 = 𝜇𝑡−1 + 𝑢𝑡

ǉ𝜎𝑡
2 = 𝜎𝑡−1

2 + 𝜎𝑎𝑐𝑡,𝑡
2

𝑥𝑡 = 𝑥𝑡−1 + 𝑢𝑡 + 휀𝑡 𝑧𝑡 = 𝑥𝑡 + 𝛿𝑡

Prediction

𝑏𝑒𝑙(𝑥𝑡) = ൝
𝜇𝑡 = ǉ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − ǉ𝜇𝑡)

𝜎𝑡
2 = (1 − 𝐾𝑡) ǉ𝜎𝑡

2 with 𝐾𝑡 =
ǉ𝜎𝑡
2

ǉ𝜎𝑡
2 + ǉ𝜎𝑜𝑏𝑠,𝑡

2

Correction

𝜎𝑡
2 = ൘

1
ൗ1 ത𝜎𝑡

2 + ൘
1
ത𝜎𝑜𝑏𝑠,𝑡
2

𝜇𝑡 =
ҧ𝜇𝑡 ത𝜎𝑜𝑏𝑗,𝑡

2 + 𝑧𝑡 ത𝜎𝑡
2

ത𝜎𝑡
2 + ത𝜎𝑜𝑏𝑗,𝑡

2

18

Kalman Filter Update in 1D: Python Code

𝑏𝑒𝑙(𝑥𝑡) = ൝
ǉ𝜇𝑡 = 𝜇𝑡−1 + 𝑢𝑡

ǉ𝜎𝑡
2 = 𝜎𝑡−1

2 + 𝜎𝑎𝑐𝑡,𝑡
2

Prediction

Correction

𝑥𝑡 = 𝑥𝑡−1 + 𝑢𝑡 + 휀𝑡 𝑧𝑡 = 𝑥𝑡 + 𝛿𝑡

𝑏𝑒𝑙(𝑥𝑡) = 𝜇𝑡 =
ҧ𝜇𝑡 ത𝜎𝑜𝑏𝑗,𝑡

2 + 𝑧𝑡 ത𝜎𝑡
2

ത𝜎𝑡
2 + ത𝜎𝑜𝑏𝑗,𝑡

2

𝜎𝑡
2 = ൘

1
ൗ1 ത𝜎𝑡

2 + ൘
1
ത𝜎𝑜𝑏𝑠,𝑡
2

19

Kalman Filter Update in 1D: Prediction

20

Kalman Filter Update in 1D: Correction

Programming Assignment 3 (PA2A)

• Write a program that will iteratively prediction and correction based on the
location measurements and inferred motions shown below.

	Slide 1: Recall: The two update steps in robot localization
	Slide 2: Recall: Markov versus Kalman localization
	Slide 3: Gaussian (Normal) Distribution: Univariate
	Slide 4: Gaussian (Normal) Distribution: Multivariate
	Slide 5: Properties of Gaussians
	Slide 6: Discrete Kalman Filter
	Slide 7: Components of a Kalman Filter
	Slide 8: Linear Gaussian Systems: Initialization
	Slide 9: Linear Gaussian Systems: Dynamics
	Slide 10: Linear Gaussian Systems: Observations
	Slide 11: Kalman Filter Algorithm
	Slide 12: Kalman Filter Prediction Update in 1D
	Slide 13: Kalman Filter Correction Update in 1D
	Slide 14: The Prediction-Correction-Cycle
	Slide 15: The Prediction-Correction-Cycle
	Slide 16: The Prediction-Correction-Cycle
	Slide 17: Kalman Filter Updates in 1D: Example
	Slide 18: Kalman Filter Update in 1D: Python Code
	Slide 19: Kalman Filter Update in 1D: Prediction
	Slide 20: Kalman Filter Update in 1D: Correction
	Slide 21: Programming Assignment 3 (PA2A)

