Recall: The Probabilistic Localization Example

- The robot is placed somewhere in the environment but is not told its location
- The robot queries its sensors and finds it is next to a pillar
- The robot moves one meter forward. To account for inherent noise in robot motion the new belief is smoother
- The robot queries its sensors and again it finds itself next to a pillar
- Finally, it updates its belief by combining this information with its previous belief

The two update steps in robot localization

1. ACTION (or prediction) update: the robot moves and estimates its position through its proprioceptive sensors. During this step, the robot uncertainty grows. This step uses the Total Probability formula to update belief

$$
\overline{\operatorname{bel}}\left(x_{t}\right)=p\left(x_{t} \mid u_{t}, x_{t-1}\right) * \operatorname{bel}\left(x_{t-1}\right)
$$

$$
p(x)=\int_{y} p(x \mid y) p(y) d y
$$

2. PERCEPTION (or measurement) update: the robot makes an observation using its exteroceptive sensors and correct its position by opportunely combining its belief before the observation with the probability of making exactly that observation. During this step, the robot uncertainty shrinks. This step uses the Bayes Rule to update belief.

$$
\operatorname{bel}\left(x_{t}\right)=\eta \cdot p\left(z_{t} \mid x_{t}\right) \cdot \overline{\operatorname{bel}}\left(x_{t}\right)
$$

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Markov versus Kalman localization

- Two approaches exist to represent the probability distribution and to compute the Total Probability and Bayes Rule during the Action and Perception phases
- Markov approach:
- The configuration space is divided into many cells. Each cell contains the probability of the robot to be in that cell.
-The probability distribution of the sensors model is also discrete.
-During Action and Perception, all the cells are updated. Therefore, the computational cost is very high.
- Kalman approach:
-The probability distribution of both the robot configuration and the sensor model is assumed to be continuous and Gaussian!
-Need only to update mean value μ and covariance Σ. Therefore the computational cost is very low!

Markov localization example: Probability After Sense

- Consider a map with five cells along a line, cells x_{2} and x_{3} are red (R) and cells x_{1}, x_{4}, and x_{5} are green (G).

- Initial belief distribution:

0.2

- Sense: Z = red
$-P(Z \mid R)=0.8$ and
$-P(Z \mid G)=0.2$
- Belief after sense:

$$
\begin{array}{ccccc}
\frac{.04}{.44} & \frac{.16}{.44} & \frac{.16}{4} & \frac{.04}{44} \frac{.04}{44} \quad \Sigma=.44 \\
J / & \psi & \jmath & \mathrm{J} / & \jmath_{1}
\end{array}
$$

- Posterior distribution:
$1 / 11 \quad 4 / 11 \quad 4 / 11 \quad 1 / 11 \quad 1 / 11 \quad \Sigma=1$

Exact Motion

- Robot moves along the cells cyclically and accurately

- Belief distribution:
$\begin{array}{lllll}1 / 11 & 4 / 11 & 4 / 11 & 1 / 11 & 1 / 11\end{array}$

Belief after move:

$$
1 / 11 \quad 4 / 11 \quad 4 / 11 \quad 1 / 11 \quad 1 / 11
$$

Inexact Motion

- Robot moves along the cells cyclically and inaccurately.

$$
\begin{aligned}
& P\left(x_{i+2} \mid x_{i}\right)=0.8 \\
& P\left(x_{i+1} \mid x_{i}\right)=0.1 \\
& P\left(x_{i+3} \mid x_{i}\right)=0.1
\end{aligned}
$$

- $U=2$

$$
\begin{gathered}
P\left(x_{i+1} \mid x_{i}\right)=0.8 \\
P\left(x_{i} \mid x_{i}\right)=0.1 \\
P\left(x_{i+2} \mid x_{i}\right)=0.1
\end{gathered}
$$

- $U=1$

$\begin{array}{lll}0.1 & 0.8 & 0.1\end{array}$

Inexact Motion I

- Robot moves along the cells cyclically and inaccurately.

$$
\begin{aligned}
& P\left(x_{i+2} \mid x_{i}\right)=0.8 \\
& P\left(x_{i+1} \mid x_{i}\right)=0.1 \\
& P\left(x_{i+3} \mid x_{i}\right)=0.1
\end{aligned}
$$

- $\mathrm{U}=2$
- Belief before move:
- Belief after move:

$$
\begin{array}{lllcc}
0 & 1 & 0 & 0 & 0 \\
& & H \delta \delta
\end{array}
$$

Inexact Motion II

- Robot moves along the cells cyclically and inaccurately.

$$
\begin{aligned}
& P\left(x_{i+2} \mid x_{i}\right)=0.8 \\
& P\left(x_{i+1} \mid x_{i}\right)=0.1 \\
& P\left(x_{i+3} \mid x_{i}\right)=0.1
\end{aligned}
$$

- $U=2$
- Belief before move:

$\begin{array}{lllll}0 & .5 & 0 & .5 & 0\end{array}$
0
- Belief after move: $\quad 5 \times \cdot 8$

$$
5 \times 0.1 .5 \times .15 \times 8 \quad 5 \times .1+.5 \times 1
$$

$$
.4 .05
$$

05

$$
\Sigma=1
$$

Inexact Motion III

- Robot moves along the cells cyclically and inaccurately.

$$
\begin{aligned}
& P\left(x_{i+2} \mid x_{i}\right)=0.8 \\
& P\left(x_{i+1} \mid x_{i}\right)=0.1 \\
& P\left(x_{i+3} \mid x_{i}\right)=0.1
\end{aligned}
$$

- $\mathrm{U}=2$
- Belief before move:
- Belief after move:

$$
0.2 \quad \begin{array}{rl}
0.2 & 0.2 \\
\downarrow & 0.2 \\
& 0.2 \\
& 2 \times .1+62 \times .8+02 \times 0.1 \\
= & 2(1+8+.1) \\
= & 2
\end{array}
$$

Localization Summary

- Sense and Move
-Sense: Gain information (belief)
-Move: lose information (belief)
- Belief: Probability
- Belief update
-Sense: Product followed by normalization
-Move: Convolution (addition)

Bayes' Rule

- Measurement update: $x_{i}=i$ th grid cell, $Z=$ measurement

Bayes' Rule: Steps to compute $P\left(x_{i} \mid Z\right)$

- Measurements: $x_{i}=$ ith grid cell, $Z=$ measurement
- Bayes' Rule $\quad P\left(x_{i} \mid Z\right)=\frac{P\left(Z \mid x_{i}\right) P\left(x_{i}\right)}{P(Z)}$

$$
P(Z)=\sum_{i} P\left(Z \mid x_{i}\right) P\left(x_{i}\right)
$$

- Steps to compute $P\left(x_{i} \mid Z\right)$

$$
\begin{aligned}
& \bar{P}\left(x_{i} \mid Z\right)=P\left(Z \mid x_{i}\right) P\left(x_{i}\right) \\
& \alpha=\sum \bar{P}\left(x_{i} \mid Z\right) \\
& P\left(x_{i} \mid Z\right)=\frac{\bar{P}\left(x_{i} \mid Z\right)}{\alpha}
\end{aligned}
$$

Theorem of Total Probability

- Motion Update: $i=i t h$ grid cell, $\mathrm{t}=$ time,

$$
P\left(x_{i}^{t}\right)=\sum_{j} P\left(x_{j}^{t-1}\right) P\left(x_{i} \mid x_{j}\right)
$$

- Theorem of Total Probability

$$
P(A)=\sum_{B} P(A \mid B) P(B)
$$

Summary

- Localization
- Markov Localization
- Probabilities
- Bayes rule for measurement update

$$
\begin{aligned}
& \bar{P}\left(x_{i} \mid Z\right)=P\left(Z \mid x_{i}\right) P\left(x_{i}\right) \\
& \alpha=\sum \bar{P}\left(x_{i} \mid Z\right) \\
& P\left(x_{i} \mid Z\right)=\frac{\bar{P}\left(x_{i} \mid Z\right)}{\alpha}
\end{aligned}
$$

- Total probability for motion update

$$
P\left(x_{i}^{t}\right)=\sum_{j} P\left(x_{j}^{t-1}\right) P\left(x_{i} \mid x_{j}\right)
$$

Probability Examples I

- Let $P(X)=0.2$.

$$
P(\neg X)=1-P(x)=1-62=08
$$

- Let $P(X)=0.2, P(Y)=0.2$, and X and Y are independent

$$
P(X, Y)=P(X) P(Y)=02 \times 02=0.04
$$

- Let $P(X)=0.2, P(Y \mid X)=0.6$, and $P(Y \mid \neg X)=0.6$

$$
\begin{aligned}
P(Y) & =P(Y \mid X) P(X)+P(Y \mid 7 X) P(7 X) \\
& =0.6 \times 0.2+0.6 \times(1-0.2) \\
& =012+0.48=0.6
\end{aligned}
$$

Probability Examples II

- Cancer test

$$
\begin{aligned}
& -P(C)=0.001 \\
& -P(\neg C)=0.999 \\
& -P(P O S \mid C)=0.8 \\
& -P(P O S \mid \neg C)=0.1
\end{aligned}
$$

$$
\begin{aligned}
& \bar{P}\left(x_{i} \mid Z\right)=P\left(Z \mid x_{i}\right) P\left(x_{i}\right) \\
& \alpha=\sum \bar{P}\left(x_{i} \mid Z\right) \\
& P\left(x_{i} \mid Z\right)=\frac{\bar{P}\left(x_{i} \mid Z\right)}{\alpha}
\end{aligned}
$$

- Probability of Cancer when having a positive cancer test

$$
-\mathrm{P}(\mathrm{C} \mid \mathrm{POS})=
$$

$$
\begin{aligned}
& P(C \mid P O S)=\frac{P(P O S \mid C) P(C)}{P(P O S)}=\frac{0.0008}{0.1007} \approx 0.008 \\
& \frac{P(P O S)=P(P O S \mid C) P(C)+P(P O S \mid \neg C) P(\neg C)}{0.1 \times 0.999} \\
& 0.0 .001 \\
& 0.0008+0.0999=0.1007
\end{aligned}
$$

Probability Examples III

- Two Coins

$$
\text { -Fair coin } P(H \mid F)=0.5
$$

$$
\text { - Unfair coin } \mathrm{P}(\mathrm{H} \mid \neg \mathrm{F})=0.1
$$

$$
-P(F)=0.5
$$

$$
\begin{gathered}
\checkmark \bar{P}\left(x_{i} \mid Z\right)=P\left(Z \mid x_{i}\right) P\left(x_{i}\right) \\
\vee \alpha=\sum \bar{P}\left(x_{i} \mid Z\right) \\
P\left(x_{i} \mid Z\right)=\frac{\bar{P}\left(x_{i} \mid Z\right)}{\alpha}
\end{gathered}
$$

- Flit a coin and observe H

$$
-P(F \mid H)=
$$

$$
P(F \mid H)=\frac{P(H \mid F) P(F)}{P(H)}=\frac{0.25}{0.3}=\ldots
$$

$$
\begin{aligned}
& P(H)=\underset{V}{P P(H \mid F) P(F)+P(H \mid \neg F) P(\neg F)} \\
& \quad 05 \times 0.50 .1 \times 0.5 \\
& 0.25+0.05=0\}
\end{aligned}
$$

Localization with using Python: Measurement Update

- Python code

Sense: Z = red
$P(Z \mid R)=0.8$ and $P(Z \mid G)=0.2$

```
p=[0.2, 0.2, 0.2, 0.2, 0.2]
world=['green', 'red', 'red', 'green', 'green']
z = 'red'
pHit = 0.8
pMiss = 0.2
def sense(p, Z):
    q= [ ]
    sum = 0.0
    for i in range(len(p)):
    hit = (z == world[i])
    q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
    sum += q[i]
    for i in range(len(q)):
    q[i] = q[i]/sum
    return q
print (sense(p,z))
```

- Result

