
Recall: The Probabilistic Localization Example

• The robot is placed somewhere in the 
environment but is not told its location 

• The robot queries its sensors and finds it 
is next to a pillar 

• The robot moves one meter forward. To 
account for inherent noise in robot 
motion the new belief is smoother 

• The robot queries its sensors and again 
it finds itself next to a pillar 

• Finally, it updates its belief by combining 
this information with its previous belief 



1. ACTION (or prediction) update: the robot moves and estimates its 
position through its proprioceptive sensors. During this step, the robot 
uncertainty grows. This step uses the Total Probability formula to update 
belief

2. PERCEPTION (or measurement) update: the robot makes an 
observation using its exteroceptive sensors and correct its position by 
opportunely combining its belief before the observation with the 
probability of making exactly that observation. During this step, the robot 
uncertainty shrinks. This step uses the Bayes Rule to update belief.

The two update steps in robot localization
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Markov versus Kalman localization

• Two approaches exist to represent the probability distribution and to 
compute the Total Probability and Bayes Rule during the Action and 
Perception phases

• Markov approach:
– The configuration space is divided into many cells. Each cell contains the 

probability of the robot to be in that cell.

– The probability distribution of the sensors model is also discrete.

– During Action and Perception, all the cells are updated. Therefore, the 
computational cost is very high.

• Kalman approach:
– The probability distribution of both the robot configuration and the sensor 

model is assumed to be continuous and Gaussian!

– Need only to update mean value μ and covariance Σ. Therefore the 
computational cost is very low!



Markov localization example: Probability After Sense

• Consider a map with five cells along a line, cells x2 and x3 are red (R) and 
cells x1, x4, and x5 are green (G).

• Initial belief distribution:     0.2        0.2      0.2       0.2       0.2

• Sense: Z = red
– P(Z|R) = 0.8 and 

– P(Z|G) = 0.2

• Belief after sense:              .04      .16       .16       .04       04       

• Posterior distribution:         1/11    4/11      4/11    1/11     1/11      
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Exact Motion

• Robot moves along the cells cyclically and accurately

• Belief distribution:                1/11      4/11    4/11     1/11     1/11

• Belief after move:

ଵ ଶ ଷ ସ ହ



Inexact Motion

• Robot moves along the cells cyclically and inaccurately.

• U = 2 0.1        0.8      0.1           

• U = 1                                             0.1     0.8       0.1
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Inexact Motion I

• Robot moves along the cells cyclically and inaccurately.

• U = 2 0.1        0.8      0.1           

• Belief before move:           0           1         0          0         0

• Belief after move: 
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Inexact Motion II

• Robot moves along the cells cyclically and inaccurately.

• U = 2 0.1        0.8      0.1           

• Belief before move:           0           .5         0         .5         0

• Belief after move: 
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Inexact Motion III

• Robot moves along the cells cyclically and inaccurately.

• U = 2 0.1        0.8      0.1          

• Belief before move:           0.2       0.2      0.2       0.2      0.2

• Belief after move: 
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Localization Summary

• Sense and Move
– Sense: Gain information (belief)

– Move: lose information (belief)

• Belief: Probability

• Belief update
– Sense: Product followed by normalization

– Move: Convolution (addition)



Bayes’ Rule

• Measurement update: xi = ith grid cell, Z = measurement

• Bayes’ Rule

Measured probability

Priori probabilityPosterior probability



Bayes’ Rule: Steps to compute 

• Measurements: xi = ith grid cell, Z = measurement

• Bayes’ Rule

• Steps to compute 



Theorem of Total Probability 

• Motion Update: i = ith grid cell, t = time, 

• Theorem of Total Probability
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Summary

• Localization

• Markov Localization

• Probabilities

• Bayes rule for measurement update

• Total probability for motion update 
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Probability Examples I

• Let P(X) = 0.2. 

P( X) = 

• Let P(X) = 0.2, P(Y) = 0.2, and X and Y are independent

P(X,Y) = 

• Let P(X) = 0.2, P(Y|X) = 0.6, and P(Y| X) = 0.6

P(Y) = 



Probability Examples II 

• Cancer test
– P(C) = 0.001

– P( C) = 0.999

– P(POS | C) = 0.8 

– P(POS | C) = 0.1

• Probability of Cancer when having a positive cancer test
– P(C | POS) = 

  








Probability Examples III

• Two Coins
– Fair coin P(H | F) = 0.5

– Unfair coin P(H | F) = 0.1

– P(F) = 0.5 

• Flit a coin and observe H
– P(F | H) = 

  








Localization with using Python: Measurement Update

• Python code

• Result

Sense: Z = red
P(Z|R) = 0.8 and 
P(Z|G) = 0.2


