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Localization, Mapping, Exploration

• Why is this a problem- can’t you just use GPS or some 
sort of RFID beacons?

• How can you simultaneously map the world and be sure 
where you are?

• How do you explore new areas efficiently or at least 
consistently?
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Specific Learning Objectives

• Define the pose of a mobile robot.

• Explain the difference between localization, 
mapping, and exploration.

• Define each term in: 

bel(xt)=f(bel(xt−1), ut, zt, m).

• Describe the difference between localization and 
simultaneous localization and mapping (SLAM).

• Define the loop closure problem.

• Compare and contrast frontier-based and 
generalized Voronoi graph (GVG) based exploration
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Localization (Position Estimation)

• “Mobile robot localization is the problem of 
determining the pose of a robot relative to a given 
map of the environment”- Thrun, Burgard, Fox
– It is often called position estimation

• The pose of a robot is its position plus its 
orientation. 
– For two dimensions, the pose is (x, y, θ)T

• Assumes that there is some sort of a priori map and 
the robot is localizing itself relative to it
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What makes localization hard

• It requires a model that incorporates the robot’s actuators, its 
sensors, and the accuracy and repeatability of those sensors in 
different environments.

• There may be sensor noise, either proprioceptive and 
exteroceptive, which introduces uncertainty.

• Methods for localization are computationally expensive.

• In some localization problems, the robot may not know its 
initial position.

• The robot may be operating in a dynamic work environment 
where objects move, causing the robot to have to consider 
whether sensor readings are a result of the robot moving or 
Object A moving.

• The path or task may not support localization. For example, if 
the robot travels across a large, open, featureless warehouse, 
it may not be able to sense any features to localize against.
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Why Odometry is Insufficient

Black
Is ground
Truth,
Purple is
Measured
Using shaft
Encoders for
D
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3 Types of Localization
is not the same as localization algorithms

LOCAL
(initial xt)

GLOBAL
(no initial xt)

SUSTAINED
UPDATES

INTERRUPTED
UPDATES

(kidnapped)

Key: Maintain 
position tracking

Key: Converge to 
right place quickly

Key: Notice that 
world is different
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Two Approaches

• Feature-based: use features extracted from raw 
data
– Label and match corners, walls, whatever

– Less features, so less computation 

– Hard to extract features reliably

• Iconic: use raw (or near raw) sensor readings
– Match observations to what would expect to see at a 

location

– Computationally intensive
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Probabilistic, Map-Based Localization

• The key idea in probabilistic robotics is to represent uncertainty using 
probability theory: instead of giving a single best estimate of the current 
robot configuration, probabilistic robotics represents the robot 
configuration as a probability distribution over the all possible robot 
poses. This probability is called belief.



The probabilistic localization problem

• Consider a mobile robot moving in a known environment.

• As it starts to move, say from a precisely known location, it can keep 
track of its motion using odometry.

• Due to odometry uncertainty, after some movement the robot will become 
very uncertain about its position.

• To keep position uncertainty from growing unbounded, the robot must 
localize itself in relation to its environment map. To localize, the robot 
uses its on-board exteroceptive sensors (e.g. ultrasonic, laser, vision 
sensors) to make observations of its environment

• The robot updates its position based on the observation. Its uncertainty 
shrinks.



Working Principle: Improving belief state by moving 

• The robot is placed somewhere in the 
environment but is not told its location 

• The robot queries its sensors and finds it 
is next to a pillar 

• The robot moves one meter forward. To 
account for inherent noise in robot 
motion the new belief is smoother 

• The robot queries its sensors and again 
it finds itself next to a pillar 

• Finally, it updates its belief by combining 
this information with its previous belief 



Why a probabilistic approach for mobile robot localization?

• Because the data coming from the robot sensors are affected by 
measurement errors, we can only compute the probability that the robot 
is in a given configuration. 

• The key idea in probabilistic robotics is to represent uncertainty using 
probability theory: instead of giving a single best estimate of the current 
robot configuration, probabilistic robotics represents the robot 
configuration as a probability distribution over the all possible robot 
poses. This probability is called belief. 



The two update steps in robot localization

1. ACTION (or prediction) update: the robot moves and estimates its 
position through its proprioceptive sensors. During this step, the robot 
uncertainty grows. This step uses the Total Probability formula to update 
belief

2. PERCEPTION (or measurement) update: the robot makes an 
observation using its exteroceptive sensors and correct its position by 
opportunely combining its belief before the observation with the 
probability of making exactly that observation. During this step, the robot 
uncertainty shrinks. This step uses the Bayes Rule to update belief.
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Markov versus Kalman localization

• Two approaches exist to represent the probability distribution and to 
compute the Total Probability and Bayes Rule during the Action and 
Perception phases

• Markov approach:
– The configuration space is divided into many cells. Each cell contains the 

probability of the robot to be in that cell.

– The probability distribution of the sensors model is also discrete.

– During Action and Perception, all the cells are updated. Therefore, the 
computational cost is very high.

• Kalman approach:
– The probability distribution of both the robot configuration and the sensor 

model is assumed to be continuous and Gaussian!

– Need only to update mean value μ and covariance Σ. Therefore the 
computational cost is very low!



Markov localization example

• Consider a robot moving in a one dimensional environment (e.g. moving 
on a rail). Therefore the robot configuration space can be represented 
through the sole variable x.

• Let us discretize the configuration space into 10 cells

• Initial belief distribution



the Action update

• Let us assume that the robot moves forward with the following statistical 
model

• This means that we have 50% probability that the robot moved 2 or 3 
cells forward

• The probability (belief) be after the motion (the Action update)
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the Action update: Computing details
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The Perception (or measurement) update

• Let us now assume that the robot uses its onboard range finder and 
measures the distance from the origin. Assume that the statistical error 
model of the sensors is

• This plot tells us that the distance of the robot from the origin can be 
equally 5 or 6 units

• The probability (belief) be after this measurement
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The Perception update: Computing details
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Feature-Based Algorithms

• Markov Localization covers all three problems, 
though usually used for local localization (position 
tracking)

• bel(xt)=f(bel(xt-1), ut, zt, m), where

– bel(x) : belief that the robot is at pose x
– Remember pose for 2D is:  x=(x y q)T

– ut : control actions or what you told the robot to do

– zt : measurements or what the robot observed

– m : map 
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Two Iconic Methods (1)

• Grid-based localization
– Uses a grid as a tessellation of convex polygon

• (Other algorithms use regular grid as way to store data)

– Computes the likelihood of all possible poses within that 
polygon given the observation and puts in a histogram

• The advantage
– The grid acts to reduce the computational complexity by 

discretizing the space. 

– In practice, grid-based localization algorithms often further 
reduce complexity by restricting matching to a local “sub-
map”

• The disadvantage
– Sub-map approach works only for local localization
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Two Iconic Methods (2)

• Grid-based localization

• Monte Carlo Localization (MCL)
– Technically it is not restricted to raw sensor observations, 

but is typically used this way

– Scatters “particles” throughout space, then computes the 
belief that the robot is at the pose given the observation

– Adds more particles at the next update, while some 
particles “die” if they have a low probability

– Fun fact: noise actually helps this method!
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Static v. Dynamic Environments

• People, changes introduce a “hidden state” in the 
model, therefore the algorithms break

• Two fundamental techniques
– State augmentation: 

• Try to make the hidden state unhidden

• Have to estimate impact of people on observations

– Outlier rejection
• Use knowledge about the sensors and the environment to 

eliminate suspicious readings

• Ex. Eliminate surprisingly short readings

• Depends on sensors, environment
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Summary of Localization
• Mobile robot localization is the problem of determining the pose of a 

robot relative to a given map of the environment

• Localization algorithms are variants of Bayes Filter algorithms, where 
the belief in a pose is a function of the last pose and a motion model

– Motion model must contain at a minimum pose, control actions, 
map

• Iconic localization is more common than feature-based due to 
problems in reliably extracting features

• In practice, Monte Carlo methods (MCL) dominate localization, both 
for iconic and feature-based

• Localization works very well for static environments with good models, 
but dynamic environments are difficult. State augmentation is 
incomplete and outlier detection hard to quantify

• The results rely heavily on the ability to accurately sense the 
environment

– Math is there, but beyond Sick laser is problematic
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SLAM (Mapping)

• Simultaneous localization and mapping

• Recall that localization requires an a priori map

• Mapping is when you don’t have a map, but you 
probably don’t have localization either…

• Thus, in practice, mapping means that the robot has to 
build a map and simultaneously localize itself to that map 
as it goes

• The new map represents the maximum likelihood of the 
world, that is, the map represents the highest probability 
of what the world really is

• Rao-Blackwellized Filtering is a dominant method in 
SLAM
– YouTube: https://www.youtube.com/watch?v=ZO83858FyaE

Motivation
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Rao-Blackwellized Filtering

• If you know the path that the robot has taken, computing the 
maximum likelihood map is easy
– It’s the map where the observations are consistent

– But you don’t know the path, because that would be 
localization…

• Let each particle contain a path and a local map (instead of 
only one version of the map)
– After each observation, update only the sensed area of the maps

– Use a tree to save all the particles forming the history of the 
current particles

– Each particle is computed independently of the others

• Will get pretty good map as go along, though probably several 
possible paths
– When “close the loop” will get a better path estimate (closure will 

propagate backwards)
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The loop closure problem

• The mechanism by which a robot notices that it has 
returned to a previously visited place is called loop 
closure

• Four main approaches to resolving the loop closure 
problem
– Feature matching: Match the geometric features within the 

map.

– Sensor scan matching: Does the sensor scan match a 
complete profile of the area? 

– Hybrid feature-scan matching: Do visible features and the 
range readings have the same profile?

– Expectation matching: Is it statistically likely that the robot 
has returned to the starting location?

26



Exploration

• Key question:  Where hasn’t robot been?

• Central concern:  how to cover an unknown area efficiently

• Possible approaches:
– Random walk

– Use proprioception to avoid areas that have been recently visited

– Exploit evidential information in the occupancy grid

• Two basic styles of exploration:
– Frontier-based

– Generalized Voronoi graph

• Both methods work OK indoors, not so clear on utility outdoors
– GVG: Susceptible to noise, hard to recover nodes

– Frontier: Have to rate the frontiers so don’t trash



Frontier-Based Exploration

• Assumes robots uses Bayesian occupancy grid

• When robot enters new area, find boundary (“Frontier”) between sensed 
(and open) and unsensed areas 

• Head towards centroid of Frontier

Frontier

Robot’s current position

Frontier

Centroid of frontier



Calculating Centroid

• Centroid is average (x,y) location:

x_c = y_c = count = 0

for every cell on the frontier line with a location of (x,y)

{  x_c = x_c + x

y_c = y_c + y

count++

}

x_c = x_c/count

y_c = y_c/count



Motion Control Based on Frontier Exploration

• Robot calculates centroid

• Robot navigates using:
– Move-to-goal and avoid-obstacle behaviors
– Or, plan path and reactively execute the path
– Or, continuously replan and execute the path

• Once robot reaches frontier, map is updated and new frontiers (perhaps) 
discovered

• Continue until no new frontiers remaining



Generalized Voronoi Graph Methods of Exploration

• Robot builds reduced generalized Voronoi graph (GVG) as it moves 
through world

• As robot moves, it attempts to maintain a path that is equidistant from all 
objects it senses (called “GVG edge”)

• When robot comes to gateway, randomly choose branch to follow, 
remembering the other edge(s)

• When one path completely explored, backtrack to previously detected 
branch point

• Exploration and backtracking continue until entire area covered.



Example of Voronoi Exploration

Start
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Summary

• SLAM works well for indoors, especially if range scans and 
multiple loops through an area

• How can you simultaneously map the world and be sure where 
you are?
– You can use probabilistic methods to be reasonably certain where 

you are 

• Frontier-based and GVG are two types of exploration, but not 
necessarily as intuitively efficient as might be expected

Motivation
SLAM
Exploration
-Frontier
-GVG
Sym-Grnd
Terrain
-Maps
-Impact
-Sensing
Summary


