
14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019)

Metric Path Planning

What is the difference between topological
navigation and metric navigation/path planning?

What is commonly used or works good enough?

How much path planning do you need?

1

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 2

Specific Learning Objectives

• Define Cspace, path relaxation, digitization bias,
subgoal obsession, and termination condition.

• Represent an indoor environment with a
generalized Voronoi graph, a regular grid, or a
quadtree, and create a graph suitable for path
planning.

• Apply the A* search algorithm to a graph to find the
optimal path between two locations.

• Explain the differences between continuous and
event-driven replanning.

• Explain how the D* search algorithm accomplishes
continuous replanning.

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 3

Path Planning Taxonomy

Path Planning

Qualitative
(no a priori map,

just routes)

Metric
(a priori maps)

Distinctive Places
Associative Methods

(purely reactive)

Graph search

A* Search
Wavefront
Propagation

Context sensitive
Cspace

Grid Cspace

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019)

Situations where topological
navigation is not sufficient

• the space between the starting point and the
destination is not easily abstracted into labeled or
perceptually distinct regions
– an unmanned aerial vehicle in the sky may have very few

perceptual landmarks.

• the choice of route impacts the control or energy
costs of the vehicle.

• the purpose of the path is to allow sensor coverage
of an area
– Search in an area, require locations in a coordinate frame

• the pose of the robot is important, either while
reaching a destination or during coverage of an area
– real robots are not holonomic

4

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 5

Two Parts of Metric Path Planning

• Representations:
– Many different ways to represent an area or volume of

space

• But all look like a “bird’s eye” view, position & viewpoint
independent

– Configuration Space (or Cspace)

• Algorithms
– Graph or network algorithms

– Wavefront or graphics-derived algorithms

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 6

Metric Maps

• Motivation for having a metric map is often path
planning (others include reasoning about
space…)

• Determine a path from one point to goal
– Generally interested in “best” or “optimal”

– What are measures of best/optimal?

– Relevant: occupied or empty

• Path planning assumes an a priori map of relevant
aspects
– Only as good as last time map was updated

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 7

Metric Maps use Cspace

• Physical space: Any rigid 3D object has 6 DOF
– 3 coordinates: x, y, z

– 3 Euler angles: φ, θ, γ, also known as pitch, yaw, and roll

• Six degrees of freedom are more than needed for a
mobile ground robot for planning a path
– In general, metric path planning algorithms for mobile

robots have assumed only two DOF, translation and
rotation

– The robot can only move forward or backward, and turn
within the (x, y) plan

• Configuration Space (Cspace)
– Transform physical space into a representation suitable for

robots, simplifying assumptions

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 8

Configuration Space

• The configuration space, or Cspace for short, is a data
structure which allows the robot to specify the position
(location and orientation) of itself and any other objects
and the robot

(x, y, z, φ, θ, γ) (x, y, θ)

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 9

Major Cspace Representations

• Idea: reduce physical space to a Cspace
representation which is more amenable for storage
in computers and for rapid execution of algorithms

• Major types

– Meadow Maps

– Generalized Voronoi Graphs (GVG)

– Regular grids, quadtrees

Object Growing

• Since we assume robot is round, we can “grow” objects by the width of
the robot and then consider the robot to be a point

• Greatly simplifies path planning

• New representation of objects typically called “configuration space object”

Method for Object Growing

Robot starting position

Robot desired position

• In this example: Triangular robot
• Configuration growing: based on robot’s

bottom left corner
• Method: conceptually move robot around

obstacles without collision, marking path of
robot’s bottom left corner

Method for Object Growing

Robot starting position

Robot desired position

Result of Object Growing: New Configuration Space

Robot starting position

Robot desired position

IMPORTANT NOTE: Must make multiple configurations spaces
corresponding to various degrees of rotations for moving objects.
Then, generalize search to move from space to space

Robot now considered a point:

Can now plan path of point through this
space without dealing with shape of robot

Meadow Maps (Hybrid Vertex-graph Free-space)

• Transform space into convex polygons
– Polygons represent safe regions for robot to traverse

• Important property of convex polygons:
– If robot starts on perimeter and goes in a straight line to any other point on the

perimeter, it will not go outside the polygon

• Path planning:
– Involves selecting the best series of polygons to transit through

Example Meadow Map

1. Grow objects

2. Construct convex
polygons

3. Mark midpoints;
these become
graph nodes for
path planner

4. Path planner
plans path
based upon new
graph

Path Relaxation

• Disadvantage of Meadow Map:
– Resulting path is jagged

• Solution: path relaxation
– Technique for smoothing jagged paths resulting from any discretization of

space

• Approach:
– Imagine path is a string
– Imagine pulling on both ends of the string to tighten it
– This removes most of “kinks” in path

Example of Path Relaxation

Starting point

Goal point

Originally planned path
Relaxed path

Limited Usefulness of Meadow Maps

• Three problems with meadow maps:
– Technique to generate polygons is computationally complex

– Uses artifacts of the map to determine polygon boundaries, rather than things
that can be sensed

– Unclear how to update or repair diagrams as robot discovers differences
between a priori map and the real world

Generalized Voronoi Diagrams (GVGs)

• GVGs:
– Popular mechanism for representing Cspace and generating a graph
– Can be constructed as robot enters new environment

• Basic GVG approach:
– Generate a Voronoi edge, which is equidistant from all points
– Point where Voronoi edge meets is called a Voronoi vertex
– Note: vertices often have physical correspondence to aspects of environment

that can be sensed
– If robot follows Voronoi edge, it won’t collide with any modeled obstacles

don’t need to grow obstacle boundaries

• GVG problems
– Sensitive to sensor noise

– Path execution: requires robot to be able to sense boundaries

Example Generalized Voronoi Graph

• (NOTE: This is only an approximate, hand-drawn graph to give the basic
idea)

Regular Grids / Occupancy Grids

• Superimposes a 2D Cartesian grid on the world space

• If there is any object in the area contained by a grid element, that element
is marked as occupied

• Center of each element in grid becomes a node, leading to highly
connected graph

• Grids are either considered 4-connected or 8-connected

Example of Regular Grid / Occupancy Grid

Disadvantages of Regular Grids

• Digitization bias:
– If object falls into even small portion of grid element, the whole element is

marked as occupied

– Leads to wasted space
• Solution: use fine-grained grids (4-6 inches)

• But, this leads to high storage cost and high # nodes for path planner to consider

• Partial solution to wasted space: Quadtrees

Quadtrees

• Representation starts with large area (e.g., 8x8 inches)

• If object falls into part of grid, but not all of grid, space is subdivided into
for smaller grids

• If object doesn’t fit into sub-element, continue recursive subdivision

• 3D version of Quadtree – called an Octree.

Example Quadtree Representation

(Not all cells are subdivided as in an actual quadtree representation (too
much work for a drawing by hand!, but this gives basic idea)

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 26

Summary of Representations
• Metric path planning requires

– Representation of world space, usually try to simplify to cspace

– Algorithms which can operate over representation to produce
best/optimal path

• Representation
– Usually try to end up with relational graph

– Regular grids are currently most popular in practice, GVGs are
interesting

– Tricks of the trade
• Grow obstacles to size of robot to be able to treat holonomic robots

as point

• Relaxation (string tightening)

• Metric methods often ignore issue of
– how to execute a planned path

– Impact of sensor noise or uncertainty, localization

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 27

Metric Path Planning as Search

• In AI “search” means that the answer is in the search space,
often just finding the path to the answer (goal)

• Types of AI search
– Blind, brute-force, uninformed

• Breadth-first

• Depth-first

• Uniform-cost

– Heuristic

• Greedy

• A*

– Local

• Hill Climbing

• Simulated annealing

• Genetic algorithms

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 28

Algorithms

• For Path planning
– A* for relational graphs, regular girds

– Wavefront for operating directly on regular grids

• For interleaving planning and execution

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 29

A Greedy Method

• Assume we know the straight-line (Euclidean)
distance from every note n to the goal node

– f(n)=h(n)

• Pick the starting node

• Repeat
– Pick a neighboring node (not picked before) that is closest

to the goal

• Until the node is goal note

Greedy Ex.: Arad to Bucharest

Initial
h(n)=366

30

Greedy Ex.: Arad to Bucharest

374

253
329

h(n)=374

h(n)=253

h(n)=329

1 expand

2 get h(n)

31

Greedy Ex.: Arad to Bucharest

h(n)=176

h(n)=380

h(n)=193

h(n)=366

h(n)=329

h(n)=374

32

Greedy Ex.: Arad to Bucharest

h(n)=0

h(n)=253

Total path=
450

BUT
Shortest=

418

33

What Went Wrong?

h(n)=176

h(n)=380

h(n)=193

h(n)=366

99+176
=275

80+193
=273

Didn’t consider
the cost of getting

to n

Rimcicu Vilc is almost as
close but shorter to get to 34

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 35

A*

• Recall greedy f(n)=h(n) and wasn’t optimal
because it didn’t consider “past”

• So, add g(n) to consider past:
– f(n)=g(n)+h(n)

• Will be optimal if h*(n) is admissible

– Admissible means h*(n) will never overestimate true cost

– In path planning, this is generally Euclidean distance

A* Ex.: Arad to Bucharest

Initial
f(n)=0+366

36

A* Ex.: Arad to Bucharest

449=75+374

393=140+253

447=118+329

374

253
329

37

A* Ex.: Arad to Bucharest

449=75+374

393=140+253

447=118+329

38

Pros and Cons of A* Search/Path Planner

• Advantage:
– Can be used with any Cspace representation that can be transformed into a

graph

• Limitation:
– Hard to use for path planning when there are factors to consider other than

distance (e.g., rocky terrain, sand, etc.)

Wavefront-Based Path Planners

• Well-suited for grid representations

• General idea: consider Cspace to be conductive material with heat
radiating out from initial node to goal node

• If there is a path, heat will eventually reach goal node

• Nice side effect: optimal path from all grid elements to the goal can be
computed

• Result: map that looks like a potential field

Example of Wavefront Planning

Start

Goal

Algorithmic approach for Wavefront Planning

Part I: Propagate wave from goal to start
• Start with binary grid; 0’s represent free space, 1’s represent obstacles
• Label goal cell with “2”
• Label all 0-valued grid cells adjacent to the “2” cell with “3”
• Label all 0-valued grid cells adjacent to the “3” cells with “4”
• Continue until wave front reaches the start cell.
Part II: Extract path using gradient descent
• Given label of start cell as “x”, find neighboring grid cell labeled “x-1”; mark this cell as a

waypoint
• Then, find neighboring grid cell labeled “x-2”; mark this cell as a waypoint
• Continue, until reach cell with value “2” (this is the goal cell)
Part III: Smooth path
• Iteratively eliminate waypoint i if path from waypoint i-1 to i+1 does not cross through

obstacle
• Repeat until no other waypoints can be eliminated
• Return waypoints as path for robot to follow

Wavefront Propagation Can Handle Different Terrains

• Obstacle: zero conductivity

• Open space: infinite conductivity

• Undesirable terrains (e.g., rocky areas): low conductivity, having effect of
a high-cost path

• Also: To save processing time, can use dual wavefront propagation,
where you propagate from both start and goal locations

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 44

Path Planning and Path Executing

• Graph-based planners (like A*) generate a path and
subpaths or subsegments

• Recall NHC
– Pilot looks at current subpath, instantiates behaviors to get

from current location to subgoal

• Subgoal obsession
– the robot spends too much time and energy trying to reach

the exact subgoal position

• Termination condition
– When does the robot think it has reached subgoal?

– What about encoder error?

• What happens if blocked? What happens if avoid an
obstacle and actually is now closer to the next subgoal?

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019)

Two Approaches to Path Replanning

• Continuous replanning
– Essentially imposing a hierarchical Sense, Plan, Act cycle.

– Example: D* algorithm

• An extension to A* algorithm

• Event-driven replanning
– Replan when there is some event, exception, or indication

that the plan execution is not working.

– Can be used in a hybrid Plan, then Sense-Act architecture
but it requires the addition of deliberative monitoring.

– Example: an extension to the Trulla algorithm

45

D* Algorithm: Extension to A*

• D*: initially plans path to goal just like A*, but plans a path from every
position to the goal in advance
– I.e., rather than “single source shortest path” (Dijkstra’s algorithm),

• Solve “all pairs shortest path” (e.g., Floyd-Warshall algorithm)

• Then, D* continuously replans, by updating map with newly sensed
information
– Approach: “repair” pre-planned paths based on new information

• Advantage: this approach eliminates sub-goal obsession
– sub-goal obsession is when the robot spends too much time and energy

trying to reach the exact sub-goal position

• Disadvantages:
– Too computationally expensive
– Highly dependent on the sensing quality

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 47

Trulla Algorithm and Example

Trulla uses the dot-product of
the intended path vector and
the actual path vector.

When the actual path
deviates by 90◦ or more, the
dot-product becomes 0 or
negative. This trigs replanning

Therefore the dot product acts
as an affordance for triggering
replanning:

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 48

Summary

• Metric path planners
– graph-based (A*, D* is best known)

– Wavefront

• Graph-based generate paths and subgoals.
– Good for NHC styles of control

– In practice leads to:

• Subgoal obsession

• Termination conditions

• Planning all possible paths helps with subgoal obsession
– What happens when the map is wrong, things change, missed

opportunities? How can you tell when the map is wrong?

14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019)

Returning to Questions…
• What is the difference between topological

navigation and metric navigation/path planning?
– One focuses on sensed routes, the other on maps

• What is commonly used or works good enough?
– A* or D* variant which considers the actual controls aspect

(i.e., non-holonomic characteristics of a robot and its
velocity and trajectory)

• How much path planning do you need?
– It depends. Moore’s Law has led to where it is possible to

replan at each step but interleaving planning and execution
may be more elegant & free up CPU

49

