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Metric Path Planning

What is the difference between topological 
navigation and metric navigation/path planning?

What is commonly used or works good enough?

How much path planning do you need?

1
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Specific Learning Objectives

• Define Cspace, path relaxation, digitization bias, 
subgoal obsession, and termination condition.

• Represent an indoor environment with a 
generalized Voronoi graph, a regular grid, or a 
quadtree, and create a graph suitable for path 
planning.

• Apply the A* search algorithm to a graph to find the 
optimal path between two locations.

• Explain the differences between continuous and 
event-driven replanning.

• Explain how the D* search algorithm accomplishes 
continuous replanning.
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Path Planning Taxonomy

Path Planning

Qualitative
(no a priori map,

just routes)

Metric
(a priori maps)

Distinctive Places
Associative Methods

(purely reactive)

Graph search

A* Search
Wavefront 
Propagation

Context sensitive 
Cspace

Grid Cspace
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Situations where topological 
navigation is not sufficient

• the space between the starting point and the 
destination is not easily abstracted into labeled or 
perceptually distinct regions
– an unmanned aerial vehicle in the sky may have very few 

perceptual landmarks.

• the choice of route impacts the control or energy 
costs of the vehicle.

• the purpose of the path is to allow sensor coverage 
of an area
– Search in an area, require locations in a coordinate frame 

• the pose of the robot is important, either while 
reaching a destination or during coverage of an area
– real robots are not holonomic

4



14

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019) 5

Two Parts of Metric Path Planning

• Representations:
– Many different ways to represent an area or volume of 

space

• But all look like a “bird’s eye” view, position & viewpoint 
independent

– Configuration Space (or Cspace)

• Algorithms
– Graph or network algorithms

– Wavefront or graphics-derived algorithms
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Metric Maps

• Motivation for having a metric map is often path 
planning (others include reasoning about 
space…)

• Determine a path from one point to goal
– Generally interested in “best” or “optimal”

– What are measures of best/optimal?

– Relevant: occupied or empty

• Path planning assumes an a priori map of relevant 
aspects
– Only as good as last time map was updated
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Metric Maps use Cspace

• Physical space: Any rigid 3D object has 6 DOF
– 3 coordinates: x, y, z  

– 3 Euler angles: φ, θ, γ, also known as pitch, yaw, and roll

• Six degrees of freedom are more than needed for a 
mobile ground robot for planning a path
– In general, metric path planning algorithms for mobile 

robots have assumed only two DOF, translation and 
rotation

– The robot can only move forward or backward, and turn 
within the (x, y) plan

• Configuration Space (Cspace)
– Transform physical space into a representation suitable for 

robots, simplifying assumptions
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Configuration Space

• The configuration space, or Cspace for short, is a data 
structure which allows the robot to specify the position 
(location and orientation) of itself and any other objects 
and the robot

(x, y, z, φ, θ, γ) (x, y, θ)
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Major Cspace Representations

• Idea: reduce physical space to a Cspace
representation which is more amenable for storage 
in computers and for rapid execution of algorithms

• Major types

– Meadow Maps

– Generalized Voronoi Graphs (GVG)

– Regular grids, quadtrees



Object Growing

• Since we assume robot is round, we can “grow” objects by the width of 
the robot and then consider the robot to be a point

• Greatly simplifies path planning

• New representation of objects typically called “configuration space object”



Method for Object Growing

Robot starting position

Robot desired position

• In this example:  Triangular robot
• Configuration growing: based on robot’s 

bottom left corner
• Method:  conceptually move robot around 

obstacles without collision, marking path of 
robot’s bottom left corner



Method for Object Growing

Robot starting position

Robot desired position



Result of Object Growing: New Configuration Space

Robot starting position

Robot desired position

IMPORTANT NOTE: Must make multiple configurations spaces 
corresponding to various degrees of rotations for moving objects. 
Then, generalize search to move from space to space

Robot now considered a point:

Can now plan path of point through this 
space without dealing with shape of robot



Meadow Maps (Hybrid Vertex-graph Free-space)

• Transform space into convex polygons
– Polygons represent safe regions for robot to traverse

• Important property of convex polygons:
– If robot starts on perimeter and goes in a straight line to any other point on the 

perimeter, it will not go outside the polygon

• Path planning:
– Involves selecting the best series of polygons to transit through



Example Meadow Map

1.  Grow objects

2.  Construct convex
polygons

3.  Mark midpoints; 
these become 
graph nodes for 
path planner

4.  Path planner 
plans path
based upon new 
graph



Path Relaxation

• Disadvantage of Meadow Map:
– Resulting path is jagged

• Solution:  path relaxation
– Technique for smoothing jagged paths resulting from any discretization of 

space

• Approach:
– Imagine path is a string
– Imagine pulling on both ends of the string to tighten it
– This removes most of “kinks” in path



Example of Path Relaxation

Starting point

Goal point

Originally planned path
Relaxed path



Limited Usefulness of Meadow Maps

• Three problems with meadow maps:
– Technique to generate polygons is computationally complex

– Uses artifacts of the map to determine polygon boundaries, rather than things 
that can be sensed

– Unclear how to update or repair diagrams as robot discovers differences 
between a priori map and the real world



Generalized Voronoi Diagrams (GVGs)

• GVGs:  
– Popular mechanism for representing Cspace and generating a graph
– Can be constructed as robot enters new environment

• Basic GVG approach:
– Generate a Voronoi edge, which is equidistant from all points
– Point where Voronoi edge meets is called a Voronoi vertex
– Note:  vertices often have physical correspondence to aspects of environment 

that can be sensed
– If robot follows Voronoi edge, it won’t collide with any modeled obstacles 

don’t need to grow obstacle boundaries

• GVG problems
– Sensitive to sensor noise

– Path execution: requires robot to be able to sense boundaries



Example Generalized Voronoi Graph

• (NOTE:  This is only an approximate, hand-drawn graph to give the basic 
idea)



Regular Grids / Occupancy Grids

• Superimposes a 2D Cartesian grid on the world space

• If there is any object in the area contained by a grid element, that element 
is marked as occupied

• Center of each element in grid becomes a node, leading to highly 
connected graph

• Grids are either considered 4-connected or 8-connected



Example of Regular Grid / Occupancy Grid



Disadvantages of Regular Grids

• Digitization bias:  
– If object falls into even small portion of grid element, the whole element is 

marked as occupied

– Leads to wasted space
• Solution:  use fine-grained grids (4-6 inches)

• But, this leads to high storage cost and high # nodes for path planner to consider

• Partial solution to wasted space:  Quadtrees



Quadtrees

• Representation starts with large area (e.g., 8x8 inches)

• If object falls into part of grid, but not all of grid, space is subdivided into 
for smaller grids

• If object doesn’t fit into sub-element, continue recursive subdivision

• 3D version of Quadtree – called an Octree.



Example Quadtree Representation

(Not all cells are subdivided as in an actual quadtree representation (too 
much work for a drawing by hand!, but this gives basic idea)
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Summary of Representations
• Metric path planning requires 

– Representation of world space, usually try to simplify to cspace

– Algorithms which can operate over representation to produce 
best/optimal path

• Representation
– Usually try to end up with relational graph

– Regular grids are currently most popular in practice, GVGs are 
interesting

– Tricks of the trade
• Grow obstacles to size of robot to be able to treat holonomic robots 

as point

• Relaxation (string tightening)

• Metric methods often ignore issue of
– how to execute a planned path

– Impact of sensor noise or uncertainty, localization
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Metric Path Planning as Search

• In AI “search” means that the answer is in the search space, 
often just finding the path to the answer (goal)

• Types of AI search
– Blind, brute-force, uninformed

• Breadth-first

• Depth-first

• Uniform-cost 

– Heuristic

• Greedy

• A*

– Local

• Hill Climbing

• Simulated annealing

• Genetic algorithms
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Algorithms

• For Path planning
– A* for relational graphs, regular girds

– Wavefront for operating directly on regular grids

• For interleaving planning and execution
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A Greedy Method

• Assume we know the straight-line (Euclidean) 
distance from every note n to the goal node

– f(n)=h(n)

• Pick the starting node

• Repeat 
– Pick a neighboring node (not picked before) that is closest 

to the goal

• Until the node is goal note



Greedy Ex.: Arad to Bucharest

Initial
h(n)=366

30



Greedy Ex.: Arad to Bucharest

374

253
329

h(n)=374

h(n)=253

h(n)=329

1 expand

2 get h(n)

31



Greedy Ex.: Arad to Bucharest

h(n)=176

h(n)=380

h(n)=193

h(n)=366

h(n)=329

h(n)=374

32



Greedy Ex.: Arad to Bucharest

h(n)=0

h(n)=253

Total path=
450

BUT
Shortest=

418

33



What Went Wrong?

h(n)=176

h(n)=380

h(n)=193

h(n)=366

99+176
=275

80+193
=273

Didn’t consider
the cost of getting 

to n

Rimcicu Vilc is almost as 
close but shorter to get to 34
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A*

• Recall greedy f(n)=h(n) and wasn’t optimal 
because it didn’t consider “past”

• So, add g(n) to consider past:
– f(n)=g(n)+h(n)

• Will be optimal if h*(n) is admissible

– Admissible means h*(n) will never overestimate true cost

– In path planning, this is generally Euclidean distance



A* Ex.: Arad to Bucharest

Initial
f(n)=0+366

36



A* Ex.: Arad to Bucharest

449=75+374

393=140+253

447=118+329

374

253
329

37



A* Ex.: Arad to Bucharest

449=75+374

393=140+253

447=118+329

38



Pros and Cons of A* Search/Path Planner

• Advantage:
– Can be used with any Cspace representation that can be transformed into a 

graph

• Limitation:
– Hard to use for path planning when there are factors to consider other than 

distance (e.g., rocky terrain, sand, etc.)



Wavefront-Based Path Planners

• Well-suited for grid representations

• General idea: consider Cspace to be conductive material with heat 
radiating out from initial node to goal node

• If there is a path, heat will eventually reach goal node

• Nice side effect: optimal path from all grid elements to the goal can be 
computed

• Result: map that looks like a potential field



Example of Wavefront Planning

Start

Goal



Algorithmic approach for Wavefront Planning

Part I:  Propagate wave from goal to start
• Start with binary grid; 0’s represent free space, 1’s represent obstacles
• Label goal cell with “2”
• Label all 0-valued grid cells adjacent to the “2” cell with “3”
• Label all 0-valued grid cells adjacent to the “3” cells with “4”
• Continue until wave front reaches the start cell.
Part II:  Extract path using gradient descent
• Given label of start cell as “x”, find neighboring grid cell labeled “x-1”; mark this cell as a 

waypoint
• Then, find neighboring grid cell labeled “x-2”; mark this cell as a waypoint
• Continue, until reach cell with value “2” (this is the goal cell)
Part III:  Smooth path
• Iteratively eliminate waypoint i if path from waypoint i-1 to i+1 does not cross through 

obstacle
• Repeat until no other waypoints can be eliminated
• Return waypoints as path for robot to follow



Wavefront Propagation Can Handle Different Terrains

• Obstacle:  zero conductivity

• Open space:  infinite conductivity

• Undesirable terrains (e.g., rocky areas): low conductivity, having effect of 
a high-cost path

• Also:  To save processing time, can use dual wavefront propagation, 
where you propagate from both start and goal locations
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Path Planning and Path Executing

• Graph-based planners (like A*) generate a path and 
subpaths or subsegments

• Recall NHC
– Pilot looks at current subpath, instantiates behaviors to get 

from current location to subgoal

• Subgoal obsession 
– the robot spends too much time and energy trying to reach 

the exact subgoal position

• Termination condition 
– When does the robot think it has reached subgoal? 

– What about encoder error?

• What happens if blocked? What happens if avoid an 
obstacle and actually is now closer to the next subgoal?
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Two Approaches to Path Replanning

• Continuous replanning
– Essentially imposing a hierarchical Sense, Plan, Act cycle. 

– Example: D* algorithm

• An extension to A* algorithm

• Event-driven replanning
– Replan when there is some event, exception, or indication 

that the plan execution is not working. 

– Can be used in a hybrid Plan, then Sense-Act architecture 
but it requires the addition of deliberative monitoring.

– Example: an extension to the Trulla algorithm

45



D* Algorithm: Extension to A*

• D*:  initially plans path to goal just like A*, but plans a path from every 
position to the goal in advance 
– I.e., rather than “single source shortest path” (Dijkstra’s algorithm), 

• Solve “all pairs shortest path” (e.g., Floyd-Warshall algorithm)

• Then, D* continuously replans, by updating map with newly sensed 
information
– Approach:  “repair” pre-planned paths based on new information

• Advantage: this approach eliminates sub-goal obsession
– sub-goal obsession is when the robot spends too much time and energy 

trying to reach the exact sub-goal position

• Disadvantages:
– Too computationally expensive
– Highly dependent on the sensing quality 
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Trulla Algorithm and Example

Trulla uses the dot-product of 
the intended path vector and 
the actual path vector.

When the actual path 
deviates by 90◦ or more, the 
dot-product becomes 0 or 
negative. This trigs replanning

Therefore the dot product acts 
as an affordance for triggering 
replanning: 
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Summary

• Metric path planners
– graph-based (A*, D* is best known)

– Wavefront

• Graph-based generate paths and subgoals.
– Good for NHC styles of control

– In practice leads to:

• Subgoal obsession

• Termination conditions

• Planning all possible paths helps with subgoal obsession
– What happens when the map is wrong, things change, missed 

opportunities? How can you tell when the map is wrong?
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Returning to Questions…
• What is the difference between topological 

navigation and metric navigation/path planning?
– One focuses on sensed routes, the other on maps

• What is commonly used or works good enough?
– A* or D* variant which considers the actual controls aspect 

(i.e., non-holonomic characteristics of a robot and its 
velocity and trajectory)

• How much path planning do you need?
– It depends. Moore’s Law has led to where it is possible to 

replan at each step but interleaving planning and execution 
may be more elegant & free up CPU

49


