

13 Specific Learning Objectives

Motivation -HNC Routes Landmarks Graphs Associative Summary

- Name the four questions of navigation, the associated robotic functions, and the areas of artificial intelligence those functions draw upon.
- Explain the role of spatial memory in navigation and the four basic functions of special memory.
- Contrast route, or topological navigation, with layout, or metric, navigation.
- Define the difference between a natural and artificial landmark and give one example of each.
- Define gateway, perceptual stability, and perceptual distinguishability.

13 Specific Learning Objectives (Cont.)

Motivation -HNC Routes Landmarks Graphs Associative Summary

- Given a description of an indoor office environment and a set of behaviors, build a relational graph representation labeling the distinctive places and local control strategies using gateways.
- Compare and contrast relational and associative methods of topological navigation

Introduction to Navigation

- Navigation is a fundamental robotics problem because it involves almost everything about Al robotics:
 - Sensing
 - Acting
 - Planning
 - Architectures
 - Hardware
 - Computational efficiencies
 - Problem solving

- Criteria for Evaluating Path
 Planners:
 - Complexity
 - Sufficiently represents the terrain
 - Sufficiently represents the physical limitations of the robot platform
 - Compatible with the reactive layer
 - Supports corrections to the map and re-planning

13

Navigation: 4 Questions

- Navigation is about getting to a specific location. It is a fundamental ability in autonomous mobile robotics
- Four questions and primary aspects of navigation:
 - Where am I going?
 - Usually defined by human operator or mission planner
 - What's the best way to get there?
 - Path planning: qualitative and quantitative
 - Where have I been?
 - Map making
 - Where am I?
 - Localization: relative or absolute
- Simultaneous Localization And Mapping (SLAM)

13

Motivation NHC Routes Landmarks Graphs Associative Summary

Navigation Requires Spatial Memory

- Spatial memory: A robot's world representation and how it is maintained over time
 - Provides methods and data structures for processing and storing information derived from sensors
 - Organized to support methods that extract relevant expectations about a navigational task
- Four basic functions of Spatial memory:
 - Attention: What features or landmarks to look for next?
 - Reasoning: Can I fit through that door?
 - Path Planning: What is the best way through this building?
 - Information collection: What does this place look like? Have I ever seen it before? What has changed since I was here before?

Navigation Requires Spatial Memory (Cont.)

- Two forms of Spatial memory:
 - Qualitative (route):
 - Express space in terms of connections between landmarks
 - Dependent upon perspective of the robot
 - Orientation clues are egocentric
 - Usually cannot be used to generate quantitative (metric/layout) representations
 - Quantitative (metric or layout):
 - Express space in terms of physical distances of travel
 - Bird's eye view of the world
 - Not dependent upon the perspective of the robot
 - Independent of orientation and position of robot
 - Can be used to generate qualitative (route) representations

Motivation NHC Routes Landmarks Graphs Associative Summary

13

13 Navigation Requires Spatial Memory (Cont.) Examples of two forms of spatial memory \bullet Layout (or Quantitative, or metric) ____ Motivation

- Route (or qualitative)

NHC

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019)

13 Route, or Qualitative Navigation

- Also referred to as topological navigation
- Based upon points of interest
 - E.g., landmarks
- Why Qualitative Navigation?
 - Don't have GPS indoors
 - Don't always have lasers
 - People don't have to accurately measure distances, just turn right at the end of the hall
- But... qualitative navigation has become less important, still a good thing to know

Motivation NHC

Motivation NHC Routes Landmarks Graphs Associative Summary

13

Topological Maps Use Landmarks

- A *landmark* is one or more perceptually distinctive features of interest on an object or locale
- Natural landmark: configuration of existing features that wasn't put in the environment to aid with the robot's navigation (ex. gas station on the corner)
- Artificial landmark: set of features added to the environment to support navigation (ex. highway sign)

13 Desirable Characteristics of Landmarks

- Readily recognizable (can see it when you need to)
 - Passive

Motivation NHC Routes Landmarks Graphs Associative Summary

- Perceivable over the entire range of where the robot might need to view it
- Distinctive features should be globally unique, or at least locally unique
- Perceivable for the task (can extract what you need from it)
 - ex. can extract relative orientation and depth
 - ex. unambiguously points the way
- Be perceivable from many different viewpoints

Example Landmarks

Motivation NHC Routes Landmarks Graphs Associative Summary

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019)

Motivation NHC Routes Landmarks Graphs Associative Summary

Two Methods

- Relational
 - E.g., "Go down the hall, turn to the left at the dead end, and enter the second doorway on the right"
 - Precise metric information not used
 - Spatial memory is a relational graph, also known as a topological map
 - Use graph theory to plan paths
- Associative
 - Spatial memory is a series of remembered viewpoints, where each viewpoint is labeled with a location
 - Good for retracing steps

Relational Methods

- Represent world as graph or network of nodes and edges
 - Nodes: represent gateways, landmarks, or goals
 - Edges: represent a navigable path between two nodes; can also have additional information attached (e.g., direction, terrain type, behaviors needed to navigate the path)

Gateway

- Special case of landmark, where robot has opportunity to change its heading
- Examples: intersection of hallways

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019)

13 Distinctive Place (DP) Approach

- Distinctive place: landmark that robot can detect from nearby region called "neighborhood"
- Once robot in the neighborhood, it uses sensors to position itself relative to the landmark
- Edge in the relational graph: local control strategy (lcs)
 - Procedure (behavior) for getting from current node to next node
- When landmark sensed, "hill-climbing" used to direct robot around in the neighborhood.
- The feature values are maximum at distinctive place

Robot moves to distinctive place using sensorbased local control strategy and hill-climbing

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019)

Example of Local Control Strategies

Basic behavior: follow-hall Releasers: look-for-T, look-for-dead-end, look-for-door, look-for-blue

Example

- Create a relational graph for this floorplan
- Label each edge with the appropriate LCS:
 - Mtd = move-thru-door, fh = follow-hall
- Label each node with the type of gateway:
 - De = deadend, t = turn, r = room

Room 1	Room 2
Room 3	Room 4

Motivation NHC Routes Landmarks Graphs Associative Summary

NHC

© 2019 Robin Murphy Introduction to AI Robotics 2nd Edition (MIT Press 2019)

Motivation

Landmarks

NHC

Example

- Create a relational graph for this floorplan
- Label each edge with the appropriate LCS: mtd, fh
- Label each node with the type of gateway: de, t, r

Distinctive Places: Advantages and Disadvantages

• Advantages:

- Eliminates concern over navigational errors at each node
- Robot can build up metric information over multiple trips, since error will average out
- Supports discovery of new landmarks

• Disadvantages:

- Difficult to find good distinctive places
 - Either too numerous, and thus not locally unique
 - Or, too few, and thus hard to find
- Difficult to define and learn local control strategies

Associative Methods

- Create a behavior that converts sensor observations into direction to go to reach a particular landmark
- Assumption: location or landmark has:
 - -Perceptual stability: views from nearby locations look similar
 - Perceptual distinguishability: views far away should look different
- Associative methods are similar to distinctive place neighborhoods
- Difference: associative methods use coarse computer vision

Visual Homing

- Partition image into coarse subsections (e.g., 16)
- Each section measured based on some attribute
 - -e.g., edge density, dominant edge orientation, average intensity, etc.
- Resulting measurements yield image signature
- Image signature forms a pattern
- If robot nearby, should be able to determine direction of motion to localize itself relative to the location
- Visual homing: the use of image signatures to direct robot to specific location

Example of Visual Homing

110

Example of Visual Homing (cont.)

QualNav – Levitt and Lawton

• Basic idea: localize robot relative to particular orientation region, or patch of the world

Orientation region:

- Defined by landmark pair boundaries
- Similar to neighborhood
- -Within an orientation region, all landmarks appear in same relationship
- Vehicle can directly perceive when it has entered a new orientation region

Example of Orientation Regions

Example of Orientation Regions (cont.)

Orientation Regions (cont.)

- Allows robot to create outdoor topological map as it explores the world
- Allows robot to coarsely localize itself
- Robot does not have to estimate range to landmarks
- Using angles to each landmark, it can move to follow desired angles

Associative Methods: Advantages and Disadvantages

• Advantages:

- Tight coupling of sensing to homing
- Robot does not need to explicitly recognize what a landmark is
- Enables robots to build up maps as it explores

• Disadvantages:

- Require massive storage
- Brittle in presence of dynamic world when landmarks may be occluded or change

Motivation NHC Routes Landmarks Graphs Associative Summary

Summary

- Route, qualitative, and topological navigation all refer to navigating by detecting and responding to landmarks.
- Landmarks may be natural or artificial; roboticists prefer natural but may have to use artificial to compensate for robot sensors
- There are two type of qualitative navigation: relational and associative

Motivation NHC Routes Landmarks Graphs Associative Summary

Summary (cont.)

- Relational methods use graphs (good for planning) and landmarks
 - The best known relational method is distinctive places
 - Distinctive places are often gateways
 - Local control strategies are behaviors
- Associative methods remember places as image signature or a viewframe extracted from a signature
 - can' t really plan a path, just retrace it
 - direct stimulus-response coupling by matching signature to current perception

Return to Questions

What is navigation?

- About getting to a specific location
- Where am I going? Mission planning
- What's the best way there? Path planning
- Where have I been? Map making
- Where am I? Localization
- How do animals navigate?
 - Topologically

Are there different types of navigation?

- Yes, topological and metric
- Which one is best?
 - It depends!
 - Topological is directly tied to the environment

13

