4b Hybrid Deliberative/Reactive (1990)

4 Hybrid Deliberative/Reactive (1990)

Objectives Review System Arch - 5 Subsystems - Paradigms -Hierarchical -Reactive -Hybrid Technical Arch - evaluating

Control people hated it because no models at the lowest level, but are getting over it

Al people loved it

Users loved it

Plan, then sense-act until task is complete or need to change; Note movement towards event-driven planning rather than continuous

Example of a Hybrid Systems Architecture for a driverless car.

4b

Objectives Review **System Arch** - 5 Subsystems - Paradigms -Hierarchical -Reactive -Hybrid Technical Arch - evaluating

Systems Architecture

- Systems architectures have evolved around functions (subsystems) and around paradigms
- The hybrid deliberative/reactive paradigm "won" the paradigm wars
 - Most extensible and reusable
 - More modular
- Hierarchical systems are still favored by DoD and NASA because of perceived efficiency and deterministic

Objectives Review System Arch - 5 Subsystems - Paradigms -Hierarchical -Reactive -Hybrid **Technical Arch** - evaluating

WHAT GOES INTO THE TECHNICAL ARCHITECTURE?

Objectives Review System Arch - 5 Subsystems - Paradigms -Hierarchical -Reactive -Hybrid **Technical Arch** - evaluating

Technical Details...

- Algorithms such as Hough transforms, genetic algorithms, neural networks, path planning, fuzzy logic, scheduling, resource allocation
- Data structures such as potential fields, perceptual spaces, polar plots
- Algorithms for coordination and control of software modules such as island driving, vector summation, subsumption, voting, production rules
- Displays and interfaces such as natural language, gestures

Objectives Review System Arch - 5 Subsystems - Paradigms -Hierarchical -Reactive -Hybrid **Technical Arch** - evaluating

Evaluating the Technical Architecture

- *support for modularity*:
 - decomposition by functionality specified by the systems architecture
- *niche targetability*:
 - Can be adapted to domains
- ease of portability to other domains:
 - Infrastructure code should be reusable
- robustness:
 - Often neglected beyond reactive system tendency to "do the right thing"

Objectives Review System Arch - 5 Subsystems - Paradigms - Hierarchical - Reactive - Hybrid Technical Arch - evaluating

SUMMARY AND ADDITIONAL THOUGHTS

Objectives Review System Arch - 5 Subsystems - Paradigms -Hierarchical -Reactive -Hybrid Technical Arch

- evaluating

Summary: Architectures

- An architecture is the Big Picture of how to program an intelligent robot.
- "Architecture" in AI robotics is often refers to
 - The operational architecture which captures the functionality
 - Three layers
 - Reactive
 - Deliberative
 - Interface
 - The system architecture developed by a researcher or research group
 - Three paradigms for the system architecture
 - Hierarchical
 - Reactive
 - Hybrid deliberative/reactive
 - The *technical architecture*, usually a novel technique such as potential fields

Summary

- The operational and system architecture influences the technical architecture
- What are the subsystems in a system architecture?
 - Navigation (Generating)
 - Cartographer, World Model, World Map (World Model)
 - Planning (Generating mission, Implementing, Selecting, Monitoring)
 - Motor Schemas, Behaviors (executing motor commands
 - Perception, Sensing, Perceptual Schemas (executing sensor input)
 - BUT THIS IS NOT ALL THAT IS NEEDED OR POSSIBLE
- What goes into a technical architecture?
 - Specific algorithms, control/coordination, knowledge structures

Next Lecture

- So far- AI is good with symbols (deliberative) and good with skills (reactive) and has ignored people (interface) - it's the conversion of sensor data "in the middle" that is holding up progress
- Telesystems
 - How do we put people "in the loop" to compensate for the problems in converting sensor data to symbols, i.e., telesystem as a workaround?
 - How intelligent does a robot need to be for people who want to work remotely through it, such as for telecommuting, telemedicine, surveillance, etc., i.e., telesystem for remote presence?

