Recall: The two update steps in robot localization

1. ACTION (or prediction) update: the robot moves and estimates its position through its proprioceptive sensors. During this step, the robot uncertainty grows. This step uses the Total Probability formula to update belief

$$
\overline{\operatorname{bel}}\left(x_{t}\right)=p\left(x_{t} \mid u_{t}, x_{t-1}\right) * \operatorname{bel}\left(x_{t-1}\right)
$$

$$
p(x)=\int_{y} p(x \mid y) p(y) d y
$$

2. PERCEPTION (or measurement) update: the robot makes an observation using its exteroceptive sensors and correct its position by opportunely combining its belief before the observation with the probability of making exactly that observation. During this step, the robot uncertainty shrinks. This step uses the Bayes Rule to update belief.

$$
\operatorname{bel}\left(x_{t}\right)=\eta \cdot p\left(z_{t} \mid x_{t}\right) \cdot \overline{\operatorname{bel}}\left(x_{t}\right)
$$

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Recall: Markov versus Kalman localization

- Two approaches exist to represent the probability distribution and to compute the Total Probability and Bayes Rule during the Action and Perception phases
- Markov approach:
-The configuration space is divided into many cells. Each cell contains the probability of the robot to be in that cell.
-The probability distribution of the sensors model is also discrete.
-During Action and Perception, all the cells are updated. Therefore, the computational cost is very high.
- Kalman approach:
-The probability distribution of both the robot configuration and the sensor model is assumed to be continuous and Gaussian!
- Need only to update mean value μ and covariance Σ. Therefore the computational cost is very low!

Sample-based Localization

- Maintain multiple estimates of robot's location
- Track possible robot positions, given all previous measurements
- Key idea: represent the belief that a robot is at a particular location by a set of "samples", or "particles"

Represent $\operatorname{Bel}(x)$ by set of N weighted, random samples, called particles:

$$
S=\left\{s_{i} \mid i=1 . . N\right\}
$$

where a sample, s_{i}, is of the form: $\ll x_{i}, y_{i}, \theta_{i}>, w_{i}>$
Here, $\left\langle x_{i}, y_{i}, \theta_{i}>\right.$ represents robot's position (location and orientation)
$w_{i} \quad$ represents a weight, where sum of all w's is 1 (analogous to discrete probability)

Updating beliefs using Particle Filters (PF)

- As before, 2 models: Action (Motion) Model, Perception (Sensing) Model
- Robot Motion Model:
-When robot moves, PF generates N new samples that approximate robot's position after motion command.
-Each sample is generated by randomly drawing from previous sample set, with likelihood determined by w values.
- A new sample x_{t}^{i} is generated from $p\left(x_{t} \mid x_{t-1}, u_{t-1}\right)$ using x_{t-1}^{i} and u_{t-1}
- The corresponding weight is computed by $\mathrm{w}_{\mathrm{t}}^{\mathrm{i}}=\mathrm{p}\left(\mathrm{z}_{\mathrm{t}} \mid \mathrm{x}_{\mathrm{t}}^{\mathrm{i}}\right)$ and then normalized

Particle Filter Algorithm

1. Algorithm particle_filter $\left(S_{t-1}, u_{t-1}, z_{t}\right)$:
2. $S_{t}=\emptyset, \quad \eta=0$
3. For $i=1 \ldots n$

Generate new samples
4. Sample index j (i) from the discrete distribution given by $\mathrm{w}_{\mathrm{t}-1}$
5. Sample x_{t}^{i} from $p\left(x_{t} \mid x_{t-1}, u_{t-1}\right)$ using $x_{t-1}^{j(i)}$ and u_{t-1}
6. $\quad w_{t}^{i}=p\left(z_{t} \mid x_{t}^{i}\right)$
7. $\eta=\eta+w_{t}^{i}$
8. $S_{t}=S_{t} \cup\left\{\left\langle x_{t}^{i}, w_{t}^{i}\right\rangle\right\}$
9. For $i=1 \ldots n$
10. $w_{t}^{i}=w_{t}^{i} / \eta$

Compute importance weight
Update normalization factor
Insert into new particle set

Normalize weight

Particle Filter Algorithm

$$
\operatorname{Bel}\left(x_{t}\right)=\eta p\left(z_{t} \mid x_{t}\right) \int p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

draw x_{t}^{i} from $p\left(x_{t} \mid x_{t-1}^{i}, u_{t-1}\right)$
\longrightarrow Importance factor for x_{t}^{i} :

$$
\begin{aligned}
w_{t}^{i} & =\frac{\text { target distribution }}{\text { proposal distribution }} \\
& =\frac{\eta p\left(z_{t} \mid x_{t}\right) \int p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}}{\int p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}} \\
& \propto p\left(z_{t} \mid x_{t}\right)
\end{aligned}
$$

Function Approximation

- Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples from a function/distribution?

Rejection Sampling

- Let us assume that $\mathrm{f}(\mathrm{x})<\mathrm{a}$ for all x
- Sample x from a uniform distribution
- Sample c from [0, a]
- If $f(x)>c$, then keep the sample
- otherwise, reject the sample

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f "
- Importance weight $w=f / g$
- f is called target
- g is called proposal

Resampling

- Given: Set S of weighted samples $\left\{\left(\mathrm{x}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right) \mid \mathrm{i}=1,2, \ldots\right\}$.
- Wanted : Random sample, where the probability of drawing x_{i} is given by w_{i}.
- Typically done n times with replacement to generate new sample set S'.

Importance Sampling with Resampling

Weighted samples

After resampling

Particle Filters

+ $p(x)$

Sensor Information: Importance Sampling

$$
\begin{array}{ll}
\operatorname{Bel}(x) & \leftarrow \alpha p(z \mid x) \operatorname{Bel}^{-}(x) \\
w & \leftarrow \alpha p(z \mid x)
\end{array} \quad w=\frac{\operatorname{Bel}(x)}{\operatorname{Bel}^{-}(x)}
$$

$p(x)$

$p(z \mid x)$

$4 p(x \mid z)$

Robot Motion

$$
\operatorname{Bel}^{-}(x) \leftarrow \int p\left(x \mid u, x^{\prime}\right) \operatorname{Bel}\left(x^{\prime}\right) \mathrm{d} x^{\prime}
$$

$p(x)$

Sensor Information：Importance Sampling

$$
\begin{array}{lll}
\operatorname{Bel}(x) & \leftarrow \alpha p(z \mid x) \operatorname{Bel}^{-}(x) \\
w & \leftarrow \alpha p(z \mid x) & w=\frac{\operatorname{Bel}(x)}{\operatorname{Bel}^{-}(x)}
\end{array}
$$

$1 p(x)$

品品品品品
$4 p(z \mid x)$
$4 p(x \mid z)$

Robot Motion

$$
\operatorname{Bel}^{-}(x) \leftarrow \int p\left(x \mid u, x^{\prime}\right) \operatorname{Bel}\left(x^{\prime}\right) \mathrm{d} x^{\prime}
$$

$\nmid p(x)$

ep(x|u)

The particle filter algorithm

1. Sample the next generation for particles using the proposal distribution
2. Compute the importance weights:
weight = target distribution / proposal distribution
3. Resampling: "Replace unlikely samples by more likely ones"

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

The particle filter algorithm

A variant of the Bayes filter based on importance sampling

```
1: Algorithm Particle_filter(}\mp@subsup{\mathcal{X}}{t-1}{},\mp@subsup{u}{t}{},\mp@subsup{z}{t}{})
2:
3: for }m=1\mathrm{ to }M\mathrm{ do
4:
5:
6:
7: endfor
8: }\quad\mathrm{ for }m=1\mathrm{ to }M\mathrm{ do
9:
10:
11: endfor
12: return }\mp@subsup{\mathcal{X}}{t}{
```


Resampling Algorithm

1. Algorithm systematic_resampling(S, n):
2. $S^{\prime}=\emptyset, c_{0}=0$
3. For $i=1 \ldots n$
4. $c_{i}=c_{i-1}+w^{i}$

Generate cdf (cumulative distribution function)
$c_{i}=w_{1}+w_{2}+\cdots+w_{i}$
5. $u_{1} \sim U\left(0, n^{-1}\right], i=1$
6. For $j=1 \ldots n$
7. While $\left(u_{j}>c_{i}\right)$

Initialize threshold $0<u_{1} \leq \frac{1}{n}$
8. $\quad i=i+1$

Draw samples ...
Skip until next threshold reached
9. $S^{\prime}=S^{\prime} \cup\left\{\left\langle x^{i}, n^{-1}\right\rangle\right\}$
10. $u_{j+1}=u_{j}+n^{-1}$
$c_{i-1}<u_{j} \leq c_{i}$
Insert
Increment threshold $u_{j}=u_{1}+\frac{j-1}{n}$
11. Return S^{\prime}

Resampling Algorithm: Example

$$
\begin{aligned}
& c_{0}=0 \\
& c_{i}=w_{1}+w_{2}+\cdots+w_{i}
\end{aligned}
$$

$$
\begin{aligned}
& 0<u_{1} \leq \frac{1}{n} \\
& u_{j}=u_{1}+\frac{j-1}{n}
\end{aligned}
$$

$$
c_{i-1}<u_{j} \leq c_{i}
$$

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	10
w	0.10	0.15	0.05	0.25	0.15	0.05	0.06	0.04	0.10	0.05
c	0.10	0.25	0.30	0.55	0.70	0.75	0.81	0.85	0.95	1.00
u	0.02	0.12	0.22	0.32	0.42	0.52	0.62	0.72	.82	0.92
S	x 1	x 2	x 2	x 4	x 4	x 4	x 5	x 6	x 8	x 9
u	0.07	0.17	0.27	0.37	0.47	0.57	0.67	0.77	0.87	0.97
s	x 1	x 2	x 3	x 4	x 4	x 5	x 5	x 7	x 9	x 10

Resampling Algorithm: Example

$$
c_{0}=0
$$

$$
0<u_{1} \leq \frac{1}{n}
$$

While $\left(u_{j}>c_{i}\right)$

$$
i=i+1
$$

$$
c_{i}=w_{1}+w_{2}+\cdots+w_{i}
$$

$$
u_{j}=u_{1}+\frac{j-1}{n}
$$

$$
S^{\prime}=S^{\prime} \cup\left\{\left\langle x^{i}, n^{-1}\right\rangle\right\}
$$

$$
u_{1}=0.02
$$

$$
u_{j+1}=u_{j}+n^{-1}
$$

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
w	0.10	0.15	0.05	0.25	0.15	0.05	0.06	0.04	0.10	0.05
c	0.10	0.25	0.30	0.55	0.70	0.75	0.81	0.85	0.95	1.00
u	0.02	0.12	0.22	0.32	0.42	0.52	0.62	0.72	.82	0.92
S	x1	x2	x2	x4	x4	x4				

Initially $i=1$	$j=1$	2	3	4	5	6	7	8	9	10
	$i=1$	2	2	4	4	4	5			

Particle Filter Example: Initial Distribution

Initially, robot doesn't know where it is

After Incorporating 10 Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Summary - Particle Filters (1/2)

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model arbitrary and thus also non-Gaussian distributions
- Proposal to draw new samples
- Weights are computed to account for the difference between the proposal and the target

Summary - Particle Filters (2/2)

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood model (likelihood of the observations).
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.
- This leads to one of the most popular approaches to mobile robot localization

