Coding and Information Theory

This is the third lecture on Mathematical Fundamentals (C) Dr. Xuejun Liang

Quick Review of Last Lecture

- Field Definition and Examples
- Extension Field
 - Z_p[x]/(f): Galois field GF(pⁿ)
 - Examples
- Definition of Linear (vector) space

Linear (vector) space: Definition

A linear space V over a field F is a set whose elements are called vectors and where two operations, addition and scalar multiplication, are defined:

- **1.** addition, denoted by +, such that to every pair x, $y \in V$ there correspond a vector $x + y \in V$, and
 - x + y = y + x,
 - $x + (y + z) = (x + y) + z, x, y, z \in V;$

(V, +) is a group, with identity element denoted by 0 and inverse denoted by -, x + (-x) = x - x = 0.

- **2.** scalar multiplication of $x \in V$ by elements $k \in F$, denoted by $kx \in V$, and
 - k(ax) = (ka)x,
 - k(x + y) = kx + ky,
 - (k + a)x = kx + ax, $x, y \in V$, $k, a \in F$.

Moreover 1x = x for all $x \in V$, 1 being the unit in F.

Subspace and Linearly independent

- Subspace: $S \subseteq V$
 - addition and scalar multiplication are closed in S
- Linear combination
 - $a_1v_1 + a_2v_2 + ... + a_nv_n$
 - Linearly independent of v_1 , v_2 , ..., v_n
 - If $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$ then $a_1 = 0$, $a_2 = 0$, ..., $a_n = 0$.
 - Linearly dependent of v₁, v₂, ..., v_n
 - There are $a_1, a_2, ..., a_n$ (not all 0's) such that $a_1v_1+a_2v_2+...+a_nv_n = 0$

Example: determine if the three vectors over Z_2 (GF(2)) are linearly dependent or not.

1.
$$\mathbf{u}_{1} = (1 \ 0 \ 1 \ 1), \mathbf{u}_{2} = (0 \ 1 \ 0 \ 0), \text{ and } \mathbf{u}_{3} = (1 \ 1 \ 1 \ 1)$$

2. $\mathbf{v}_{1} = (0 \ 1 \ 1 \ 0), \mathbf{v}_{2} = (1 \ 0 \ 0 \ 1), \text{ and } \mathbf{v}_{3} = (1 \ 0 \ 1 \ 1)$

Basis and Dimension

- Basis (or Base)
 - Basis: independent vectors that can span the whole vector space.
 - Any vector is a linear combination of basis vectors.
- Dimension
 - Number of vectors within the basis
 - Example: V_n is n-dimension

Example: determine a basis and the dimension of the subspace S in V_4 over Z_2 consisting of vectors:

 $v_1 = (1 \ 1 \ 0 \ 0), v_2 = (1 \ 0 \ 1 \ 0), v_3 = (0 \ 1 \ 1 \ 1)$ are independent and

$$a_1v_1 + a_2v_2 + a_3v_3$$
, where $a_1, a_2, a_3 \in Z_2$.

generates vectors in S. So v_1 , v_2 , v_3 is a basis of S.

$0v_1 + 0v_2 + 0v_3$	= (0 0 0 0)
$0v_1 + 0v_2 + 1v_3 = v_3$	= (0 1 1 1)
$0v_1 + 1v_2 + 0v_3 = v_2$	= (1010)
$0v_1 + 1v_2 + 1v_3 = v_2 + v_3$	= (1 1 0 1)
$1v_1 + 0v_2 + 0v_3 = v_1$	= (1 1 0 0)
$1v_1 + 0v_2 + 1v_3 = v_1 + v_3$	= (1011)
$1v_1 + 1v_2 + 0v_3 = v_1 + v_2$	= (0 1 1 0)
$1v_1 + 1v_2 + 1v_3 = v_1 + v_2 + v_3$	= (0 0 0 1)

Orthogonality and Dual Space

- Orthogonality
 - Inner product of $\mathbf{u} = (u_0, u_1, ..., u_{n-1})$ and $\mathbf{v} = (v_0, v_1, ..., v_{n-1})$: $\mathbf{u} \cdot \mathbf{v} = u_0 v_0 + u_1 v_1 + ..., + u_{n-1} v_{n-1}$
 - **u** and **v** are said orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$
 - Subspaces S and P of V_n are said orthogonal if for any u ∈ S and any v ∈ P, we have u · v = 0
- Dual Space
 - Subspace S of V_n is the dual space (null space) of another subspace P of V_n if S and P are orthogonal and dim(S) + dim(P) = n

Example: Show S and P are dual each other S = {(0000), (1100), (1011), (0111) P = {(0000), (1101), (1110), (0011)

Matrix

$$\mathbf{G} = \begin{bmatrix} g_{00} & g_{01} & g_{02} & \cdots & g_{0,n-1} \\ g_{10} & g_{11} & g_{12} & \cdots & g_{1,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{m-1,0} & g_{m-1,1} & g_{m-1,2} & \cdots & g_{m-1,n-1} \end{bmatrix}$$

- Let G be a m×n matrix
 - All linear combinations of row vectors of G is a subspace of V_{n_r} called **row vector space** of G.
 - All linear combinations of column vectors of G is a subspace of V_m called **column vector space** of G.
 - The dimension of row vector space is called **row rank** and the dimension of column vector space is called **column rank**.
 - Row rank and column are always equal, it is called the rank of the matrix.
- Elementary row operations of a matrix
 - swap two rows, multiply a row with a scalar, add multiple of a row to another
- Elementary row operations do not change the row rank.

Example: Determine the row space of matrix over Z₂

$$\mathsf{G} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Let $v_1 = (1 \ 0 \ 0 \ 1 \ 0 \ 1)$, $v_2 = (0 \ 1 \ 0 \ 0 \ 1 \ 1)$, $v_3 = (0 \ 0 \ 1 \ 1 \ 1 \ 0)$, then $a_1v_1 + a_2v_2 + a_3v_3$, where $a_1, a_2, a_3 \in Z_2$. generates the following vectors

= (0 0 0 0 0 0)
= (0 0 1 1 1 0)
= (0 1 0 0 1 1)
= (0 1 1 1 0 1)
= (1 0 0 1 0 1)
= (101011)
= (1 1 0 1 1 0)
= (1 1 1 0 0 0)

Example:

- Consider the G in previous example. Compute a matric G' by adding row 3 of G to row 1 of G and then interchanging rows 2 and 3 of G.
- Show that the row space of G' is the same as that generated by G.

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} \longrightarrow G' = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Let $v_1 = (1 \ 0 \ 1 \ 0 \ 1 \ 1)$, $v_2 = (0 \ 0 \ 1 \ 1 \ 0)$, $v_3 = (0 \ 1 \ 0 \ 0 \ 1 \ 1)$, then $a_1v_1 + a_2v_2 + a_3v_3$, where $a_1, a_2, a_3 \in Z_2$. generates the following vectors

$0v_1 + 0v_2 + 0v_3$	= (0 0 0 0 0 0)
$0v_1 + 0v_2 + 1v_3 = v_3$	= (0 1 0 0 1 1)
$0v_1 + 1v_2 + 0v_3 = v_2$	= (0 0 1 1 1 0)
$0v_1 + 1v_2 + 1v_3 = v_2 + v_3$	= (0 1 1 1 0 1)
$1v_1 + 0v_2 + 0v_3 = v_1$	= (1 0 1 0 1 1)
$1v_1 + 0v_2 + 1v_3 = v_1 + v_3$	= (1 1 1 0 0 0)
$1v_1 + 1v_2 + 0v_3 = v_1 + v_2$	= (100101)
$1v_1 + 1v_2 + 1v_3 = v_1 + v_2 + v_3$	= (1 1 0 1 1 0)

Matrix Multiplication and Transpose

Assume
$$A = (a_{ij})_{m \times k}$$
 and $B = (b_{ij})_{k \times n}$
Then, $C = AB = (c_{ij})_{m \times n}$, where
 $c_{ij} = \sum_{l=1}^{k} a_{il} b_{lj}$

$$c_{ij} = (a_{i1}a_{i2} \dots a_{ik}) \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ \vdots \\ b_{kj} \end{pmatrix}$$

The transpose of matrix A is defined as $A^T = (a_{ji})_{k \times m}$

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix} \qquad AB =$$

 $A^T = B^T =$

Linear Equations and Matrix

Assume
$$A = (a_{ij})_{m \times n}$$
 and $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{n \times 1}$. Then, we have
$$AX = \begin{pmatrix} a_{11}a_{12} \dots a_{1n} \\ a_{21}a_{22} \dots a_{2n} \\ \vdots \\ a_{m1}a_{m2} \dots a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

A set of *m* simultaneous linear equations have two equivalent representations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

.....

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

$$\begin{pmatrix} a_{11}a_{12}\dots a_{1n} \\ a_{21}a_{22}\dots a_{2n} \\ \vdots \\ a_{m1}a_{m2}\dots a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

AX = 0