Coding and Information Theory

This is the second lecture on Mathematical Fundamentals (B) Dr. Xuejun Liang

Quick Review of Last Lecture

- Modular Arithmetic
- Group and Examples
- Euclidean Theorem
 - The Euclidean Algorithm
 - The Extended Euclidean Algorithm
 - Examples
- Field

Field

- A set *F* is a Field
 - At least two elements 0, $1 \in F$
 - Two operations + and × on F
 - Associative and commutative
 - Operation × distributes over +
 - 0 is the identity for + and 1 for \times
 - Additive inverse and multiplicative inverse

Order of Field: The number of elements in a field is known as the *order* of the field. A field having finite number of elements is called a *finite field*.

Property 1: For every element *a* in a field, $a \times 0 = 0 \times a = 0$.

Property 2: For any two nonzero elements *a* and *b* in a field, $a \times b \neq 0$.

Property 3: For $a \neq 0$, $a \times b = a \times c$ implies that b = c.

Finite Field Examples

 $(Z_7, +, \times, 0, 1)$ is a Field

Example: Evaluate $((2 - 4) \times 4)/3$ in the field Z_7

[+]	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

[•]	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

- $(Z_p, +, \times, 0, 1)$ is a Field (when p is a prime number.)
 - +, × are closed
 - +, × are associative and commutative
 - Operation × distributes over +
 - 0 is the identity for + and 1 for ×
 - Additive inverse and multiplicative inverse

Extension Field

Goal: Given a prime p and a positive integer n, construct a field with pⁿ elements. Let $f(x)=2x^3+x^2+2$ and $g(x) = x^2+2 \in Z_3[x]$ f(x)+g(x) = f(x)-g(x) = f(x)g(x) =f(x)/g(x) =

Definitions and Notations:

$$\begin{split} &Z_p[x]: \text{all polynomials in the indeterminate x with coefficients in } Z_p.\\ °(f): \text{the degree of } f(f \in Z_p[x]) \text{ is the largest exponent in a term of } f.\\ &f\mid g: f \text{ divides } g(f,g \in Z_p[x]), \text{ if } g = f \cdot h \text{ for some } h \in Z_p[x].\\ &g\equiv h \pmod{f}: f\mid (g-h) \text{ (f, } g,h\in Z_p[x] \text{ and } def(f)\geq 1)\\ &Z_p[x]/(f): \text{ all congruence classes modulo } f \text{ in } Z_p[x] \text{ (f } \in Z_p[x]). \end{split}$$

 $Z_p[x]/(f)$ is equipped with +, × and $|Z_p[x]/(f)| = p^n$, where n=deg(f)

Example: $Z_3[x]/(x^2-1)$

(1) List all the elements in forms $a_0 + a_1x$, $a_0, a_1 \in \mathbb{Z}_3$.

(2) List a complete multiplication table.

 $Z_3[x]/(x^2-1)$

 $= \{0 + 0x, 0 + 1x, 0 + 2x, 1 + 0x, 1 + 1x, 1 + 2x, 2 + 0x, 2 + 1x, 2 + 2x\}$

 $= \{0, 1, 2, x, 2x, 1 + x, 1 + 2x, 2 + x, 2 + 2x\}$

	1	2	x	2 <i>x</i>	1+x	1+2x	2+ <i>x</i>	2+2 <i>x</i>
1	1	2	x	2 <i>x</i>	1+x	1+2x	2+ <i>x</i>	2+2 <i>x</i>
2	2							
x	x							
2 <i>x</i>	2 <i>x</i>							
1+x	1+x							
1+2 <i>x</i>	1+2 <i>x</i>							
2+ <i>x</i>	2+ <i>x</i>							
2+2 <i>x</i>	2+2 <i>x</i>							

Extension Fields (Cont.)

In general $Z_p[x]/(f)$ is a ring, not a field.

Definition: A polynomial f in $Z_p[x]$ is called irreducible, if f can not be written as $f = f_1 \cdot f_2$ where $deg(f_1) > 0$ and $deg(f_2) > 0$.

Fact: If f in $Z_p[x]$ is irreducible polynomial of degree n, then $Z_p[x]/(f)$ is a field with p^n elements.

Notation: $Z_p[x]/(f)$ is called Galois field and is denoted by $GF(p^n)$.

Example: $GF(2^3) = Z_2[x]/(x^3+x+1)$ (1) List all the elements in forms $a_0 + a_1x + a_2x^2$, a_0 , a_1 , $a_1 \in Z_2$. (2) Compute $(x^2 + 1) \times (x^2 + x + 1)$.

 $Z_2[x]/(x^3+x+1)$

 $= \{0 + 0x + 0x^{2}, 0 + 0x + 1x^{2}, 0 + 1x + 0x^{2}, 1 + 0x + 1x + 1x^{2}, 1 + 1x + 1x^{2}\}$

 $= \{0, 1, x, 1 + x, x^{2}, 1 + x^{2}, x + x^{2}, 1 + x + x^{2}\}$

Linear (vector) space: Definition

A linear space V over a field F is a set whose elements are called vectors and where two operations, addition and scalar multiplication, are defined:

- **1.** addition, denoted by +, such that to every pair x, $y \in V$ there correspond a vector $x + y \in V$, and
 - x + y = y + x,
 - $x + (y + z) = (x + y) + z, x, y, z \in V;$

(X, +) is a group, with identity element denoted by 0 and inverse denoted by -, x + (-x) = x - x = 0.

- **2.** scalar multiplication of $x \in V$ by elements $k \in F$, denoted by $kx \in V$, and
 - k(ax) = (ka)x,
 - k(x + y) = kx + ky,
 - (k + a)x = kx + ax, $x, y \in V$, $k, a \in F$.

Moreover 1x = x for all $x \in V$, 1 being the unit in F.

Example: V_4 of all 4-tuples over Z_2 (GF(2)).

Subspace and Linearly independent

- Subspace: $S \subseteq V$
 - addition and scalar multiplication are closed in S
- Linear combination
 - $a_1v_1 + a_2v_2 + ... + a_nv_n$
 - Linearly independent of v_1 , v_2 , ..., v_n
 - If $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$ then $a_1 = 0$, $a_2 = 0$, ..., $a_n = 0$.
 - Linearly dependent of v₁, v₂, ..., v_n
 - There are $a_1, a_2, ..., a_n$ (not all 0's) such that $a_1v_1+a_2v_2+...+a_nv_n = 0$