CS 4450

Coding and Information Theory

This is the first lecture on Mathematical Fundamentals (A)

Dr. Xuejun Liang

Mathematical Fundamentals

- 1. Modular Arithmetic
- 2. Group and Examples
- 3. Euclidean Theorem
- 4. Field and Examples
- 5. Extension Field
- 6. Linear (Vector) Space
- 7. Matrix and Groups of Linear Equations

Modular Arithmetic

Definition 1: Suppose a and b are integers, and m is positive integer. Then we write $a \equiv b \pmod{m}$ if m divides b-a.

- $a \equiv b \mod m$ if and only if $(a-b) = k \times m$ for some k
- Z_m the equivalence class under mod m
- Canonical form $Z_m = \{0,1,2,...,m-1\}$, we use the positive remainder as the standard representation.
- \bullet -a mod m = m (a mod m)

Modulo-7 Addition in Z₇

[+]	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

$$5 + 13 \equiv 5 + 1 \equiv 6 \mod 12$$

$$5 \times 13 \equiv 5 \times 1 \equiv 5 \mod 12$$

Group

Definition 2: A set G on which a binary operation * is defined is called a *group* if the following conditions are satisfied:

- 1. The binary operation * is associative.
- 2. G contains an element *e*, called an *identity element* on *G*, such that, for any *a* in *G*

$$a * e = e * a = a$$

3. For any element a in G, there exists another element a', called an inverse of a in G, such that

A group *G* is said to be *commutative* if its binary operation * satisfies the following condition: For any *a* and *b* in *G*,

$$a * b = b * a$$

Two important properties of groups:

- 1. The inverse of a group element is unique.
- 2. The identity element in a group *G* is unique.

Group examples

• $(Z_2, +, 0)$ is a group

•
$$(Z_7, +, 0)$$
 is a group

[+]	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Order of Group: The number of elements in a group is known as the order of the group

- (Z_m, +, 0) is a group
 - + is closed
 - Associative: (a + b) + c = a + (b + c)
 - Commutative: a + b = b + a (abelian group)
 - 0 is the identity for +: a + 0 = a + 0 = a
 - Additive inverse: (-a) + a = a + (-a) = 0

Group examples

Let p be a prime (e.g., $p = 2, 3, 5, 7, 11, 13, 17, ...). Then (Zp-{0}, <math>\times$, 1) = ({1, 2, ..., p-1}, \times , 1) is a multiplicative (modulo-p) group.

Proof: Let $a \in Z_p$ - $\{0\}$, Since a < p and p is a prime, a and p must be relatively prime. By Euclidean theorem, there exist two integers i and j such that

$$i \cdot a + j \cdot p = 1$$
 $i \cdot a = -j \cdot p + 1 = 1 \pmod{p}$ $a^{-1} = i \pmod{p}$

•
$$(Z_7-\{0\}, \times, 1)$$
 is a group

[•]	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Euclidean Theorem

The Euclidean Algorithm (to compute $gcd(r_0, r_1)$)

The Extended Euclidean Algorithm (to find the inverse of $r_1 \in Z_n$, $(n=r_0)$)

1. Perform the Euclidean Algorithm for r_0 and r_1 . Record the quotients

$$q_1, q_2, ..., q_m$$

2. Compute $t_0, t_1, ..., t_m$ recursively as follows

$$t_{0} = 0, s_{0} = 1$$

$$t_{1} = 1, s_{1} = 0$$

$$t_{j} = t_{j-2} - q_{j-1}t_{j-1}, \ 2 \le j \le m, s_{j} = s_{j-2} - q_{j-1}s_{j-1}, \ 2 \le j \le m,$$
3. $r_{1}^{-1} = t_{m}$.

Theorem 1 $r_i = s_i r_0 + t_i r_1$, for $0 \le j \le m$.

Corollary 2 If $gcd(r_0, r_1) = 1$, then $r_1^{-1} = t_m \mod r_0$

Example: Compute 3⁻¹ in Z₇

$$r_0 = 7, r_1 = 3$$

$$7 = 2 \times 3 + 1$$

$$3 = 3 \times 1 + 0$$

$$q_1 = 2, q_2 = 3$$

$$t_0 = 0$$

 $t_1 = 1$
 $t_2 = 0 - 2 \times 1 = -2 = 5$

$$3^{-1} = 5$$
 in Z_7

- 1. Perform the Euclidean Algorithm for r_0 and r_1 $q_1, q_2, ..., q_m$.
- 2. Compute t_0 , t_1 , ..., t_m recursively as follows $t_0=0,$ $t_1=1,$ $t_j=t_{j\text{-}2}-q_{j\text{-}1}t_{j\text{-}1},\ 2\leq j\leq m,$
- 3. $r_1^{-1} = t_m$.

[•]	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Example: Compute 28⁻¹ in Z₇₅

$$r_0 = 75, r_1 = 28$$

 $75 = 2 \times 28 + 19$
 $28 = 1 \times 19 + 9$
 $19 = 2 \times 18 + 1$
 $9 = 9 \times 1 + 0$

- 1. Perform the Euclidean Algorithm for r_0 and r_1 $q_1, q_2, ..., q_m$.
- 2. Compute t_0 , t_1 , ..., t_m recursively as follows $t_0 = 0,$ $t_1 = 1,$ $t_j = t_{j-2} q_{j-1}t_{j-1}, \ 2 \le j \le m,$
- 3. $r_1^{-1} = t_m$.

$$q_1 = 2, q_2 = 1, q_3 = 2, q_4 = 9$$
 $t_0 = 0$
 $t_1 = 1$
 $t_2 = 0 - 2 \times 1 = -2$
 $t_3 = 1 - 1 \times (-2) = 3$
 $t_4 = -2 - 2 \times 3 = -8 = 67$

$$28^{-1} = 67 \text{ in } Z_{75}$$

Field

- A set F is a Field
 - At least two elements $0, 1 \in F$
 - Two operations + and \times on F
 - Associative and commutative
 - Operation × distributes over +
 - 0 is the identity for + and 1 for \times
 - Additive inverse and multiplicative inverse

Order of Field: The number of elements in a field is known as the *order* of the field. A field having finite number of elements is called a *finite field*.

Property 1: For every element a in a field, $a \times 0 = 0 \times a = 0$.

Property 2: For any two nonzero elements a and b in a field, $a \times b \neq 0$.

Property 3: For $a \neq 0$, $a \times b = a \times c$ implies that b = c.

Finite Field Examples

$$(Z_7, +, \times, 0, 1)$$
 is a Field

Example:

Evaluate $((2-4) \times 4)/3$ in the field \mathbb{Z}_7

[+]	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

[•]	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

- $(Z_p, +, \times, 0, 1)$ is a Field (when p is a prime number.)
 - +, × are closed
 - +, × are associative and commutative
 - Operation × distributes over +
 - \bullet 0 is the identity for + and 1 for \times
 - Additive inverse and multiplicative inverse