Coding and Information Theory Chapter 7: Linear Codes - E

Xuejun Liang

Chapter 7: Linear Codes

- 1. Matrix Description of Linear Codes
- 2. Equivalence of Linear Codes
- 3. Minimum Distance of Linear Codes
- 4. The Hamming Codes
- 5. The Golay Codes
- 6. The Standard Array
- 7. Syndrome Decoding

Quick Review of Last Lecture

- Minimum Distance of Linear Codes
 - Corollary 7.31: A linear [*n*, *k*]-code is *t*-error-correcting if and only if every set of 2*t* columns of its parity-check matrix are linearly independent
- The Hamming Codes H_n
 - $n = 2^{C} 1$
 - Construct Hamming codes H_n
 - Nearest neighbor decoding with H_n
- The Standard Array
 - Construct the standard array of a linear code C
 - Decoding rule with using the standard array

7.7 Syndrome Decoding

- If *H* is a parity-check matrix for a linear code $C \subseteq V$ then the syndrome of a vector $v \in V$ is the vector $\mathbf{s} = \mathbf{v}H^{\mathrm{T}} \in F^{n-k}$ (7.8)
- Lemma 7.42
 - Let C be a linear code, with parity-check matrix H, and let $v, v' \in V$ have syndromes s, s'. Then v and v' lie in the same coset of C if and only if s = s'.
- Proof of Lemma 7.42

$$\mathbf{v} + \mathcal{C} = \mathbf{v}' + \mathcal{C} \iff \mathbf{v} - \mathbf{v}' \in \mathcal{C}$$
$$\iff (\mathbf{v} - \mathbf{v}')H^{\mathrm{T}} = \mathbf{0} \qquad \text{(by Lemma 7.10)}$$
$$\iff \mathbf{v}H^{\mathrm{T}} = \mathbf{v}'H^{\mathrm{T}}$$
$$\iff \mathbf{s} = \mathbf{s}'.$$

Syndrome Table

- Lemma 7.42 shows that
 - A vector $v \in V$ lies in the *i*-th row of the standard array if and only if it has the same syndrome as v_i , that is,

$$\boldsymbol{\nu}H^T = \boldsymbol{\nu}_{\boldsymbol{i}}H^T$$

• A syndrome table can be created with each row having a coset leader v_i and its syndrome s_i (= $v_i H^T$).

A Syndrome Table Example 7.43

- \mathbf{v}_i • Let C be the binary repetition code R_4 , with standard array as given in Example 7.39, so 0000 000the coset leaders v_i are the words in its first 1000column. 0100010
- Apply the parity-check matrix given in Example 7.11.

$$H = \begin{pmatrix} 1 & -1 \\ 1 & -1 \\ & 1 & -1 \\ & & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ & 1 & 1 \\ & & & 1 \end{pmatrix}$$
 0001 111
1100 110
1010 101

 \mathbf{s}_i

100

001

111

011

0010

0001

1001

• Compute syndrome s_i for each v_i .

Syndrome Decoding

The syndrome decoding proceeds as follows

- Given any received \boldsymbol{v} , compute its syndrome $\boldsymbol{s} = \boldsymbol{v}H^T$.
- Find s in the second column of the syndrome table, say $s = s_i$, the *i*-th entry.
- If v_i is the coset leader corresponding to s_i in the table, Then decode v as $u_i = v - v_i$. I.e.

 $\Delta(\mathbf{v}) = \mathbf{u}_j = \mathbf{v} - \mathbf{v}_i$, where $\mathbf{v}H^{\mathrm{T}} = \mathbf{s}_i$

A Syndrome Decoding Example 7.44

 $\Delta(\mathbf{v}) = \mathbf{u}_j = \mathbf{v} - \mathbf{v}_i, \quad \text{where} \quad \mathbf{v}H^{\mathrm{T}} = \mathbf{s}_i$

	\mathbf{v}_i	\mathbf{s}_i
As in Example 7.43.	0000	000
• $v = 1101$ is received.	1000	100
• its syndrome $s = v H^T = 001$.	0100	010
• This is s_4 in the syndrome table,	0010	001
so we decode v as	0001	111
$\Delta(\mathbf{v}) = \mathbf{v} - \mathbf{v}_4 = 1101 - 0010 = 1111$	1100	110
	1010	101
	1001	011