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Quick Review of Last Lecture

• Equivalence of Linear Codes
• The definition of equivalence of linear codes 𝐶1 and 𝐶2

• Generator matrix in systematic form 𝐺 = 𝐼𝑘|𝑃

• Parity-check matrix in systematic form 𝐻 = (−𝑃𝑇|𝐼𝑛−𝑘)

• The Singleton Bound 𝑑 ≤ 1 + 𝑛 − 𝑘

• Examples

• Minimum Distance of Linear Codes
• The 𝑑 is the minimum number of linearly dependent 

columns of parity-check matrix 𝐻.

• Meaning of linearly dependent of columns of 𝐻

• Examples



• Corollary 7.31
There is a 𝑡-error-correcting linear [𝑛, 𝑘]-code over 𝐹 if and 
only if there is an (𝑛 − 𝑘) × 𝑛 matrix 𝐻 over 𝐹, of rank 𝑛 - 𝑘, 
with every set of 2𝑡 columns linearly independent.

• Proof:

Minimum Distance of Linear Codes

Given such a code 𝐶, let 𝐻 be a parity-check matrix for 𝐶,(⇒)

So 𝐻 has 𝑛 columns and 𝑛 − 𝑘 independent rows.

By Theorem 6.10, 𝐶 has minimum distance 𝑑 ≥ 2𝑡 + 1.

By Theorem 7.27, every set of at most 𝑑 − 1 columns are 
linearly independent

So, every set of 2𝑡 columns are linearly independent



• Corollary 7.31
There is a 𝑡-error-correcting linear [𝑛, 𝑘]-code over 𝐹 if and 
only if there is an (𝑛 − 𝑘) × 𝑛 matrix 𝐻 over 𝐹, of rank 𝑛 - 𝑘, 
with every set of 2𝑡 columns linearly independent.

• Proof:

(⇐) Given such a matrix 𝐻

Since 𝐻 has rank 𝑛 − 𝑘, its 𝑛 − 𝑘 rows are linearly independent

So 𝐶 has dimension 𝑘

By hypothesis, every set of linearly dependent columns of 𝐻 
contains at least 2𝑡 + 1 columns

So Theorem 7.27 implies that C has minimum distance 𝑑 ≥ 2𝑡 + 1 

Hence 𝐶 corrects 𝑡 errors by Theorem 6.10. 



7.4 The Hamming Codes

• For a 1-error-correcting binary linear code, put 𝑡 = 1 
and 𝑞 = 2 in the sphere-packing bound (Corollary 6.17), 
so the condition for a perfect code becomes

• Let 𝑐 = 𝑛 - 𝑘 (the number of check digits), then this 
condition is equivalent to

• So



The Hamming Codes (Cont.)

Construct codes with these parameters on 𝐹2 = {0,1}

• By Corollary 7.31, need to construct a 𝑐 x 𝑛 matrix 𝐻
over 𝐹2 , of rank 𝑐, with every pair of columns linearly 
independent (non-zero and distinct).

• Columns of 𝐻 must consist of all 2c - 1 non-zero binary 
vectors of length 𝑐, in some order. 

• This matrix 𝐻 has rank of 𝑐. Use it as the parity-check 
matrix, we have a code 𝐶 with these parameters. This 
code is called the binary Hamming code 𝑯𝒏 of length 𝑛
= 2𝑐 – 1.



• Example 7.32
• 𝐻3 has the parity checking matrix

• c = 2, n = 3, k = 1

• 𝐻3 is 𝑅3 !!!

• Note: The rate of 𝐻𝑛 will approaches to 1.

• Nearest neighbor decoding with 𝐻𝑛

• The receiver computes 𝑠 = 𝑣𝐻𝑇, 
• Called the syndrome of 𝑣. 

• If 𝑠 = 0, the receiver decodes 𝑣 as ∆ 𝑣 = 𝑣, and 

• if 𝑠 = 𝑐𝑖
𝑇 (the 𝑖-th column of H) then ∆ 𝑣 = 𝑣 − 𝑒𝑖.



Nearest Neighbor Decoding

• Example 7.33

• Let us use 𝐻7, with parity-check matrix

• Suppose that 𝑢 = 1101001 is sent, and 𝑣 = 1101101 is 
received, so the error-pattern is 𝑒 = 𝑒5.

• The syndrome is 𝑠 = 𝑣𝐻𝑇 = 100, which is the transpose 
𝑐5

𝑇 of the fifth column of 𝐻.

• This indicates an error in the fifth position, so changing 
this entry of 𝑣 we get ∆ 𝑣 = 1101001 = 𝑢

𝑣 = (1    1     0     1    1     0    1) 



• Using the parity checking matrix as below, then a non-
zero syndrome is the binary representation of the 
position 𝑖 where a single error 𝑒, has appeared

• Example 7.34
• Verify this using example 7.33

• Note: need to perform a column permutation 
(1362547) to change between the two representations.

𝑢 = 1101001 

𝑣 = (1   1    0   1   1    0   1) 𝑠 = 𝑣𝐻𝑇 = 101

1    2    3    4    5    6    7

𝑣 = 1101101 

∆ 𝑣  = 1101001 = 𝑢



Construction of perfect 1-error-correcting 
linear codes for prime-powers q > 2

• We take the columns of 𝐻 to be

pairwise linearly independent vectors of length 𝑐 over 𝐹𝑞.

• The resulting linear code has length 𝑛, dimension 𝑘 = 𝑛 - 𝑐, 
and minimum distance 𝑑 = 3, so 𝑡 = 1.

• As in the binary case, 𝑅 → 1 as 𝑐 → ∞, but PrE ↛ 0.



Construction of perfect 1-error-correcting 
linear codes for prime-powers q > 2

• Example 7.35

• If 𝑞 = 3 and 𝑐 = 2, then 𝑛 = 4 and 𝑘 =2. 

• We can take

• The solutions of the simultaneous linear equations 

will give a perfect 1-error-correcting linear [4, 2]-code
over 𝐹3

𝑣𝐻𝑇 = 0



7.5 The Golay Codes

• Skip this section



7.6 The Standard Array

• Suppose 𝐶 ⊆ 𝑉 is a linear code. The standard array of 𝐶 is 
essentially a table in which the elements of 𝑉 are arranged 
into cosets of the subspace 𝐶.

• Suppose that                                  is a linear code with 𝑀 = 𝑞𝑘

elements. Assume 𝒖𝟏 = 𝟎.

• For 𝑖 = 1, … , 𝑞𝑛−𝑘 − 1, let the 𝑖-th row consist of the 
elements of the coset of 𝐶.

where 𝑤𝑡(𝑣𝑖) ≤ 𝑤𝑡 𝑣𝑖+1 , 𝑖 = 1, … , 𝑞𝑛−𝑘 − 1 and 𝑣𝑖 is not in 
the previous ( < 𝑖 ) rows.

• A horizontal line across the array, immediately under the 
last row to satisfy 𝑤𝑡(𝑣𝑖) ≤ 𝑡, where 𝑡 = Τ(𝑑 − 1) 2 .



The Standard Array (Cont.)

• Example 7.39
• Let 𝐶 be the binary repetition 

code R4 of length n = 4, so 𝑞 = 2, 
𝑘 = 1 and the code-words are 

𝒖𝟏 = 0 = 0000 and 𝒖𝟐 = 1 = 1111

• There are 𝑞𝑛−𝑘 = 8 cosets of 𝐶
in 𝑉, each with two vectors

• So, standard array has 8 rows: 

𝑣1 + 𝐶, 𝑣2 + 𝐶, … , 𝑣8 + 𝐶

𝑣1 = ℎ𝑎𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 0
𝑣2 𝑡𝑜 𝑣5 ℎ𝑎𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 1
𝑣6, 𝑣7, 𝑣8 ℎ𝑎𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 2

𝑣1 + 𝐶

𝑣2 + 𝐶

𝑣3 + 𝐶

𝑣4 + 𝐶

𝑣5 + 𝐶

𝑣6 + 𝐶

𝑣7 + 𝐶

𝑣8 + 𝐶

0000  1111

1000  0111

0100  1011

0010  1101

0001  1110

1100  0011

1010  0101

1001  0110

𝒖𝟏

0000
𝒖𝟐 

1111



The Standard Array (Cont.)

• Lemma 7.40
a) If 𝑣 is in the 𝑗-th column of 

the standard array (that is, 
𝑣 = 𝑣𝑖 + 𝑢𝑗 for some 𝑖), 
then 𝑢𝑗is a nearest code-
word to 𝑣.

b) If, in addition, 𝑣 is above 
the line in the standard 
array (that is, 𝑤𝑡(𝑣𝑖) ≤ 𝑡), 
then 𝑢𝑗 is the unique 
nearest code-word to 𝑣.

𝑣1 + 𝐶

𝑣2 + 𝐶

𝑣3 + 𝐶

𝑣4 + 𝐶

𝑣5 + 𝐶

𝑣6 + 𝐶

𝑣7 + 𝐶

𝑣8 + 𝐶

0000  1111

1000  0111

0100  1011

0010  1101

0001  1110

1100  0011

1010  0101

1001  0110

𝑣 = 𝑣4 + 𝑢2

𝒖𝟏

0000
𝒖𝟐 

1111



The Standard Array (Cont.)

• The sphere 𝑆𝑡(𝑢𝑗) of radius 𝑡 about 𝑢𝑗 is the part of the 
𝑗-th column above the line.

• Thus C is perfect if and only if the entire standard array 
is above the line



The Standard Array (Cont.)

• Decoding rule
• Suppose that a code-word 

𝑢 ∈ 𝐶 is transmitted, and  
𝑣 = 𝑢 + 𝑒 ∈ 𝑉 is received, 
where 𝑒 is the error-pattern.

• The receiver finds 𝑣 = 𝑣𝑖 + 𝑢𝑗

in the standard array, and 
decides that Δ 𝑣 = 𝑢𝑗 (𝑢𝑗 is 
header of a column)

• Note this rule gives correct 
decoding if and only if the 
error-pattern is a coset
leader (𝑒 = 𝑣𝑖). 

𝑣1 + 𝐶

𝑣2 + 𝐶

𝑣3 + 𝐶

𝑣4 + 𝐶

𝑣5 + 𝐶

𝑣6 + 𝐶

𝑣7 + 𝐶

𝑣8 + 𝐶

0000  1111

1000  0111

0100  1011

0010  1101

0001  1110

1100  0011

1010  0101

1001  0110

𝒖𝟏

0000
𝒖𝟐 

1111

𝑣 = 𝑣5 + 𝑢2



• Let 𝐶 = 𝑅4. Suppose that        
𝒖 = 1111 is sent, and the  
error-pattern is 𝑒 = 0100,    
𝑣 = ? and 𝑢𝑗 = ?

• How about when 𝑒 = 0110?

• How about when e = 1100?

𝑣1 + 𝐶

𝑣2 + 𝐶

𝑣3 + 𝐶

𝑣4 + 𝐶

𝑣5 + 𝐶

𝑣6 + 𝐶

𝑣7 + 𝐶

𝑣8 + 𝐶

0000  1111

1000  0111

0100  1011

0010  1101

0001  1110

1100  0011

1010  0101

1001  0110

𝑢
𝒖𝟏

0000
𝒖𝟐 

1111

Example 7.41



7.7 Syndrome Decoding

• If 𝐻 is a parity-check matrix for a linear code 𝐶 ⊆ 𝑉
then the syndrome of a vector 𝑣 ∈ 𝑉 is the vector

• Lemma 7.42
• Let 𝐶 be a linear code, with parity-check matrix 𝐻, and 

let 𝑣, 𝑣′ ∈ 𝑉 have syndromes 𝑠, 𝑠′. Then 𝑣 and 𝑣' lie in 
the same coset of 𝐶 if and only if 𝑠 = 𝑠′.

• Proof of Lemma 7.42
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