Coding and Information Theory Chapter 7: Linear Codes - D

Xuejun Liang

Chapter 7: Linear Codes

- 1. Matrix Description of Linear Codes
- 2. Equivalence of Linear Codes
- 3. Minimum Distance of Linear Codes
- 4. The Hamming Codes
- 5. The Golay Codes
- 6. The Standard Array
- 7. Syndrome Decoding

Quick Review of Last Lecture

- Equivalence of Linear Codes
 - The definition of equivalence of linear codes C_1 and C_2
 - Generator matrix in systematic form $G = (I_k|P)$
 - Parity-check matrix in systematic form $H = (-P^T | I_{n-k})$
 - The Singleton Bound $d \le 1 + n k$
 - Examples
- Minimum Distance of Linear Codes
 - The d is the minimum number of linearly dependent columns of parity-check matrix H.
 - Meaning of linearly dependent of columns of H
 - Examples

Minimum Distance of Linear Codes

Corollary 7.31

There is a t-error-correcting linear [n, k]-code over F if and only if there is an $(n - k) \times n$ matrix H over F, of rank n - k, with every set of 2t columns linearly independent.

Proof:

 (\Rightarrow) Given such a code C, let H be a parity-check matrix for C,

So H has n columns and n - k independent rows.

By Theorem 6.10, C has minimum distance $d \ge 2t + 1$.

By Theorem 7.27, every set of at most d-1 columns are linearly independent

So, every set of 2t columns are linearly independent

Corollary 7.31

There is a t-error-correcting linear [n, k]-code over F if and only if there is an $(n - k) \times n$ matrix H over F, of rank n - k, with every set of 2t columns linearly independent.

• Proof:

 (\Leftarrow) Given such a matrix H

let
$$\mathcal{V} = F^n$$
 and let $\mathcal{C} = \{ \mathbf{v} \in \mathcal{V} \mid \mathbf{v}H^T = \mathbf{0} \}$

Since H has rank n-k, its n-k rows are linearly independent

So C has dimension k

By hypothesis, every set of linearly dependent columns of H contains at least 2t+1 columns

So Theorem 7.27 implies that C has minimum distance $d \ge 2t + 1$

Hence *C* corrects *t* errors by Theorem 6.10.

7.4 The Hamming Codes $\left|\sum_{i=0}^{t} {n \choose i} (q-1)^i \leq q^{n-k}\right|$

$$\sum_{i=0}^{t} \binom{n}{i} (q-1)^i \le q^{n-k}$$

• For a 1-error-correcting binary linear code, put t=1and q = 2 in the sphere-packing bound (Corollary 6.17), so the condition for a perfect code becomes

$$2^{n-k} = 1 + \binom{n}{1} = 1 + n$$

• Let c = n - k (the number of check digits), then this condition is equivalent to

$$n = 2^c - 1. (7.4)$$

So

$$c = 1$$
 2 3 4 5 ...
 $n = 1$ 3 7 15 31 ...
 $k = 0$ 1 4 11 26 ...

The Hamming Codes (Cont.)

Construct codes with these parameters on $F_2 = \{0,1\}$

- By Corollary 7.31, need to construct a $c \times n$ matrix H over F_2 , of rank c, with every pair of columns linearly independent (non-zero and distinct).
- Columns of H must consist of all 2^c 1 non-zero binary vectors of length c, in some order.
- This matrix H has rank of c. Use it as the parity-check matrix, we have a code C with these parameters. This code is called the **binary Hamming code** H_n of length $n = 2^c 1$.

- Example 7.32
 - H_3 has the parity checking matrix $H = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$
 - c = 2, n = 3, k = 1
 - H_3 is R_3 !!!

• Note: The rate of H_n will approaches to 1.

$$R = \frac{k}{n} = \frac{2^c - 1 - c}{2^c - 1} \to 1$$

- Nearest neighbor decoding with H_n
 - The receiver computes $s = vH^T$,
 - Called the syndrome of v.
 - If s = 0, the receiver decodes v as $\Delta(v) = v$, and
 - if $s = c_i^T$ (the *i*-th column of H) then $\Delta(v) = v e_i$.

Nearest Neighbor Decoding

- Example 7.33
 - Let us use H_7 , with parity-check matrix

$$H = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$v = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

- Suppose that u = 1101001 is sent, and v = 1101101 is received, so the error-pattern is e = e_5 .
- The syndrome is $s = vH^T = 100$, which is the transpose c_5^T of the fifth column of H.
- This indicates an error in the fifth position, so changing this entry of v we get $\Delta(v) = 1101001 = u$

Using the parity checking matrix as below, then a non-zero syndrome is the binary representation of the position i where a single error e, has appeared

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

- Example 7.34
 - Verify this using example 7.33

$$u = 1101001$$

 $v = 1101101$
 $S = vH^T = 101$
 $\Delta(v) = 1101001 = u$
 $H = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$
 $v = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$

 Note: need to perform a column permutation (1362547) to change between the two representations.

Construction of perfect 1-error-correcting linear codes for prime-powers q > 2

We take the columns of H to be

$$n = \frac{q^{c} - 1}{q - 1} = 1 + q + q^{2} + \dots + q^{c - 1}$$

$$\sum_{i=0}^{t} \binom{n}{i} (q - 1)^{i} \le q^{n - k}$$

pairwise linearly independent vectors of length c over F_q .

• The resulting linear code has length n, dimension k = n - c, and minimum distance d = 3, so t = 1.

• As in the binary case, $R \to 1$ as $c \to \infty$, but $\Pr_{E} \nrightarrow 0$.

Construction of perfect 1-error-correcting linear codes for prime-powers q > 2

- Example 7.35
 - If q = 3 and c = 2, then n = 4 and k = 2.
 - We can take

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}$$

• The solutions of the simultaneous linear equations $vH^T=0$

will give a perfect 1-error-correcting linear [4, 2]-code over F_3

$$n = \frac{q^c - 1}{q - 1} = 1 + q + q^2 + \dots + q^{c-1}$$

7.5 The Golay Codes

• Skip this section

7.6 The Standard Array

- Suppose $C \subseteq V$ is a linear code. The standard array of C is essentially a table in which the elements of V are arranged into cosets of the subspace C.
- Suppose that $C = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_M\}$ is a linear code with $M = q^k$ elements. Assume $u_1 = \mathbf{0}$.
- For $i = 1, ..., q^{n-k} 1$, let the i-th row consist of the elements of the coset of C.

$$\begin{aligned} \mathbf{v}_i + \mathcal{C} &= \{ \mathbf{v}_i + \mathbf{u}_1 \; (= \mathbf{v}_i), \; \mathbf{v}_i + \mathbf{u}_2, \; \dots, \; \mathbf{v}_i + \mathbf{u}_M \} \\ \text{where } wt(v_i) &\leq wt(v_{i+1}), i = 1, \dots, q^{n-k} - 1 \text{ and } v_i \text{ is not in the previous (< i) rows.} \end{aligned}$$

• A horizontal line across the array, immediately under the last row to satisfy $wt(v_i) \le t$, where $t = \lfloor (d-1)/2 \rfloor$.

- Example 7.39
 - Let C be the binary repetition code R_4 of length n = 4, so q = 2, k = 1 and the code-words are $u_1 = 0 = 0000$ and $u_2 = 1 = 1111$
 - There are $q^{n-k} = 8$ cosets of C in V, each with two vectors
 - So, standard array has 8 rows:

$$v_1 + C$$
, $v_2 + C$, ..., $v_8 + C$
 $v_1 = has\ weight\ 0$
 $v_2\ to\ v_5\ has\ weight\ 1$
 $v_6, v_7, v_8\ has\ weight\ 2$

	<i>u</i> ₁ 0000	<i>u</i> ₂ 1111
$v_1 + C$	0000	1111
$v_2 + C$	1000	0111
$v_3 + C$	0100	1011
$v_4 + C$	0010	1101
$v_5 + C$	0001	1110
$\overline{v_6 + C}$	1100	0011
$v_7 + C$	1010	0101
$v_8 + C$	1001	0110

- Lemma 7.40
 - a) If v is in the j-th column of the standard array (that is, $v = v_i + u_j$ for some i), then u_j is a nearest codeword to v.
 - b) If, in addition, v is above the line in the standard array (that is, $wt(v_i) \le t$), then u_j is the unique nearest code-word to v.

```
u_1
                 u_2
         0000
                1111
v_1 + C
          0000 1111
v_2 + C
          1000 0111
v_3 + C
          0100 1011
v_4 + C
          0010 1101 v = v_4 + u_2
v_5 + C
          0001 1110
v_6 + C
          1100 0011
v_7 + C
          1010 0101
v_8 + C
          1001 0110
```

- The sphere $S_t(u_j)$ of radius t about u_j is the part of the j-th column above the line.
- Thus C is perfect if and only if the entire standard array is above the line

- Decoding rule
 - Suppose that a code-word $u \in C$ is transmitted, and $v = u + e \in V$ is received, where e is the error-pattern.
 - The receiver finds $v = v_i + u_j$ in the standard array, and decides that $\Delta(v) = u_j$ (u_j is header of a column)
- Note this rule gives correct decoding if and only if the error-pattern is a coset leader $(e = v_i)$.

```
u_1
                u_2
         0000
               1111
v_1 + C
         0000 1111
v_2 + C
         1000 0111
v_3 + C
         0100 1011
v_4 + C
         0010 1101
v_5 + C
         0001 1110 v = v_5 + u_2
v_6 + C
         1100 0011
v_7 + C
         1010 0101
v_8 + C
         1001 0110
```

Example 7.41

• Let $C = R_4$. Suppose that u = 1111 is sent, and the error-pattern is e = 0100, v = ? and $u_i = ?$

• How about when e = 0110?

• How about when e = 1100?

	<i>u</i> ₁ 0000	<i>u</i> ₂ 1111	и
$v_1 + C$	0000	1111	
$v_2 + C$	1000	0111	
$v_3 + C$	0100	1011	
$v_4 + C$	0010	1101	
$v_5 + C$	0001	1110	
$\overline{v_6 + C}$	1100	0011	
$v_7 + C$	1010	0101	
$v_8 + C$	1001	0110	

7.7 Syndrome Decoding

• If H is a parity-check matrix for a linear code $C \subseteq V$ then the syndrome of a vector $v \in V$ is the vector

$$\mathbf{s} = \mathbf{v}H^{\mathrm{T}} \in F^{n-k} \tag{7.8}$$

- Lemma 7.42
 - Let C be a linear code, with parity-check matrix H, and let $v, v' \in V$ have syndromes s, s'. Then v and v' lie in the same coset of C if and only if s = s'.
- Proof of Lemma 7.42

$$\mathbf{v} + \mathcal{C} = \mathbf{v}' + \mathcal{C} \iff \mathbf{v} - \mathbf{v}' \in \mathcal{C}$$

$$\iff (\mathbf{v} - \mathbf{v}')H^{\mathrm{T}} = \mathbf{0} \qquad \text{(by Lemma 7.10)}$$

$$\iff \mathbf{v}H^{\mathrm{T}} = \mathbf{v}'H^{\mathrm{T}}$$

$$\iff \mathbf{s} = \mathbf{s}'.$$