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Quick Review of Last Lecture

* Equivalence of Linear Codes
* The definition of equivalence of linear codes C; and C,
* Generator matrix in systematic form G = (I |P)
Parity-check matrix in systematic form H = (—=PT|L,,_;,)
The SingletonBoundd <1+n—k
* Examples

e Minimum Distance of Linear Codes

* The d is the minimum number of linearly dependent
columns of parity-check matrix H.

* Meaning of linearly dependent of columns of H
* Examples



Minimum Distance of Linear Codes

e Corollary 7.31

There is a t-error-correcting linear [n, k]-code over F if and
only if thereis an (n — k) X n matrix H over F, of rankn - k,
with every set of 2t columns linearly independent.

* Proof:

(=) | Given such a code C, let H be a parity-check matrix for C,

So H has n columns and n — k independent rows.

By Theorem 6.10, C has minimum distance d = 2t + 1.

By Theorem 7.27, every set of at most d — 1 columns are
linearly independent

So, every set of 2t columns are linearly independent




e Corollary 7.31

There is a t-error-correcting linear [n, k]-code over F if and
only if there is an (n — k) X n matrix H over F, of rankn - k,

with every set of 2t columns linearly independent.
* Proof:

(<) Given such a matrix H

let V=F"andletC ={veV|vH' =0}

Since H hasrankn — k, its n — k rows are linearly independent

So C has dimension k

By hypothesis, every set of linearly dependent columns of H
contains at least 2t 4+ 1 columns

So Theorem 7.27 implies that C has minimum distance d = 2t + 1

Hence C corrects t errors by Theorem 6.10.




/.4 The Hamming Codes > (1)a-v <o

* For a 1-error-correcting binary linear code, putt =1
and g = 2 in the sphere-packing bound (Corollary 6.17),
so the condition for a perfect code becomes

Th*=1+(i)=1+n

* Let c =n - k (the number of check digits), then this
condition is equivalent to

n=2_1. (7.4)

= 15 31
k= 0 1 4 11 26

=
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The Hamming Codes (Cont.)

Construct codes with these parameters on F, = {0,1}

e By Corollary 7.31, need to construct a ¢ x n matrix H
over I, , of rank ¢, with every pair of columns linearly
independent (non-zero and distinct).

e Columns of H must consist of all 2¢- 1 non-zero binary
vectors of length ¢, in some order.

* This matrix H has rank of c. Use it as the parity-check
matrix, we have a code C with these parameters. This

code is called the binary Hamming code H,, of length n
=2¢—-1.



* Example 7.32
* H; has the parity checking matrix H = (? (1] 1)
ec=2,n=3,k=1
* Hyis Ry !l

* Note: The rate of H,, will approaches to 1.

k 2¢0—-1-c¢
R=0 =7 !

* Nearest neighbor decoding with H,,
* The receiver computes s = vH,
e Called the syndrome of v.
 If s =0, the receiver decodes v as A(v) = v, and
e if s =¢;! (the i-th column of H) then A(v) = v — e;.



Nearest Neighbor Decoding

* Example 7.33
* Let us use H-, with parity-check matrix
01 1 1100
H=\|1 01 1 1
1 1 0 1 0
1 0 1 0 1)

e Suppose that u =1101001 is sent, and v =1101101 is
received, so the error-patternis e = es.

-

= O O
=

v=(1

 The syndrome is s = vHT = 100, which is the transpose
c:! of the fifth column of H.

* This indicates an error in the fifth position, so changing
this entry of v we get A(v) = 1101001 = u



* Using the parity checking matrix as below, then a non-
zero syndrome is the binary representation of the
position i where a single error e, has appeared

0001111
H={0 110011
1 010101

4 5 6 7

1 2 3
* Example 7.34

* Verify this using example 7.33

u = 1101001 0111100

H=11 01 1 01 0
v =1101101 1101001
s =vHT =101 v=(11 011 0 1)

A(v) =1101001=u

* Note: need to perform a column permutation
(1362547) to change between the two representations.



Construction of perfect 1-error-correcting
linear codes for prime-powers q > 2

 We take the columns of H to be

c_1 " |
n:i 1 =l+g+g ++g7" Z(?)(q-l)‘ﬁq""‘
B i=0

pairwise linearly independent vectors of length c over F;.

* The resulting linear code has length n, dimension k =n - c,
and minimum distanced =3,sot = 1.

* Asin the binary case, R - 1 as ¢ — oo, but Pr. » 0.



Construction of perfect 1-error-correcting
linear codes for prime-powers q > 2

* Example 7.35
*Ifg=3andc=2,thenn=4andk =2.
* We can take

1 1 10
H= (1 2 0 1)
* The solutions of the simultaneous linear equations
vHT =0

will give a perfect 1-error-correcting linear [4, 2]-code
over F;

- —1

p— =1l+q+¢ + - +g!

n=




7.5 The Golay Codes

* Skip this section



/.6 The Standard Array

* Suppose C € V is alinear code. The standard array of C is
essentially a table in which the elements of I are arranged
into cosets of the subspace C.

* Suppose that C = {u;,u,,...,up}is a linear code with M = g*
elements. Assume uy; = 0.

e Fori =1, ...,q”‘k — 1, let the i-th row consist of the
elements of the coset of C.

vi+C:{vi+u1 (ZVi), Vi +ug, ..., th-i-uM}

where wt(v;) < wt(v;11),i = 1, ...,q" % — 1 and v; is not in
the previous ( < i) rows.

* A horizontal line across the array, immediately under the
last row to satisfy wt(v;) < t, wheret = [(d — 1)/2].



The Standard Array (Cont.)

Uy Uy
0000 1111

v +C 0000 1111
v, +C 1000 0111

 Example 7.39

* Let C be the binary repetition
code R, of lengthn=4,s0q = 2,
k =1 and the code-words are

1, =0=0000and uy =1 =1111 vs +C 0100 1011
v, +C 0010 1101

* There are g™ % = 8 cosets of C
vs+C 0001 1110

in V, each with two vectors

* So, standard array has 8 rows: ve +( 1100 0011

v1+C,v;+C,...,v5+C v7+C 1010 0101
vg+C 1001 0110

v, = has weight 0
v, to vs has weight 1
Vg, U7, Vg has weight 2



The Standard Array (Cont.)

* Lemma 7.40

a) Ifvisinthe j-th column of

b)

the standard array (that is,
v = v; + u; for some i),
then u;is a nearest code-
word to v.

If, in addition, v is above
the line in the standard
array (thatis, wt(v;) < t),
then y; is the unique
nearest code-word to v.

U Uz

0000 1111
vy +C 0000 1111
v, +C 1000 0111
v3+C 0100 1011
v, +C 0010 1101
vs+C 0001 1110
ve+C 1100 0011
v;+C 1010 0101
vg+C 1001 0110

V=0, 1+ Uy



The Standard Array (Cont.)

* The sphere S;(u;) of radius t about u; is the part of the
J-th column above the line.

* Thus Cis perfect if and only if the entire standard array
is above the line



The Standard Array (Cont.)

e Decoding rule

e Suppose that a code-word
u € C is transmitted, and
v=u-+e € Visreceived,
where e is the error-pattern.

* The receiver finds v = v; + y;
in the standard array, and
decides that A(v) = u; (u; is
header of a column)

* Note this rule gives correct
decoding if and only if the
error-pattern is a coset
leader (e = vy).

U Uz

0000 1111
vi+C 0000 1111
v, +C 1000 0111
v3+C 0100 1011
v, +C 0010 1101
vs+C 0001 1110
Ve +C 1100 0011
v, +C 1010 0101
vg+C 1001 0110

UV ="Vs + Uy



Example 7.41

* Let C = R,. Suppose that
u=1111is sent, and the
error-patternis e = 0100,
v=7?andu; =7

e How about whene =01107?

e How about when e =11007?

u, u;

0000 1111
v; +C 0000 1111
v, +C 1000 0111
v3+C 0100 1011
v, +C 0010 1101
vs+C 0001 1110
ve+C 1100 0011
v;+C 1010 0101
vg+C 1001 0110

u



/.7 Syndrome Decoding

* If H is a parity-check matrix for a linearcode C € V
then the syndrome of a vector v € I/ is the vector

s=vH! ¢ FnFk (7.8)
* Lemma 7.42

* Let C be alinear code, with parity-check matrix H, and
let v, v’ € V have syndromes s,s’. Then v and v' lie in
the same coset of C if and only if s = s’.

* Proof of Lemma 7.42
v+C=v+C = v-v' el
< (v-v)H' =0 (by Lemma 7.10)
< vH' =v'H?
— s=¢g".
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