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Quick Review of Last Lecture

• Matrix Description of Linear Codes
• Linear code 𝐶 ⊆ 𝑉 = 𝐹𝑛 and let dim(𝐶) = 𝑘

• Dual Code 𝐷 of 𝐶: dim(𝐷) = 𝑛 − 𝑘

• Orthogonal Code 𝐶⊥ of 𝐶: 𝐷 = 𝐶⊥ and 𝐶 = 𝐷⊥

• Examples:

• 𝐶 = 𝐶⊥

• 𝑅𝑛
⊥ = 𝑃𝑛 and 𝑃𝑛

⊥ = 𝑅𝑛

• The code 𝐻7
⊥ is a linear [7, 3]-code over 𝐹2

• The conditions for 𝐻 to be a parity-check matrix for 𝐶



7.2 Equivalence of Linear Codes

• The elementary row operations of matrix consist of
• permuting rows,

• multiplying a row by a non-zero constant, and 

• replacing a row 𝑟𝑖 with 𝑟𝑖 + 𝑎𝑟𝑗 where 𝑗 ≠ 𝑖 and 𝑎 ≠ 0.

• Two linear codes 𝐶1 and 𝐶2 are equivalent if they have 
generator matrices 𝐺1 and 𝐺2 which differ only by 
elementary row operations and permutations of columns.
• Elementary row operations on generator 𝐺 may change the 

basis for 𝐶, but they do not change the subspace 𝐶.

• Permutations of columns of 𝐺 may change 𝐶, but the new 
code will differ from 𝐶 only in the order of symbols within 
code-words.



Equivalence of Linear Codes (Cont.)

• By systematically using elementary row operations and 
column permutations, one can convert any generator matrix 
into the form

• We then say that 𝐺 (or 𝐶) is in systematic form.
• In this case, each 𝒂 = 𝑎1 … 𝑎𝑘 ∈ 𝐹𝑘 is encoded as

• where 𝑎1 … 𝑎𝑘 are information digits and 𝑎𝑘+1 … 𝑎𝑛 = 𝒂𝑃 is 
a block of 𝑛 - 𝑘 check digits.



Two Examples

• Example 7.18
• The generator matrices 𝐺 for 

the codes 𝑅𝑛 and 𝑃𝑛 are in 
systematic form.

• Example 7.19.
• The generator matrix 𝐺 for 𝐻7, is not in systematic form.

• But, it can be transformed into systematic form.



Equivalence of Linear Codes (Cont.)

• If we have a generator matrix 𝐺 = 𝐼𝑘|𝑃 in systematic 
form for a linear code 𝐶, then we can find a parity-
check matrix for 𝐶.

• This is the systematic form for a parity-check matrix

• Prove this by using Lemma 7.17
• H has n - k rows and n columns

• Its rows are independent

•



Parity-check matrix in systematic form

• Example 7.20: For the code 𝑅𝑛

• Example 7.21: For the code 𝑃𝑛

𝐻 = (−𝑃𝑇|𝐼𝑛−𝑘)𝐺 = (𝐼𝑘|𝑃)

𝑃 = (1, … , 1)1×(𝑛−1)

𝐺 = (1,1, … , 1)1×𝑛 𝐻 = −𝑃𝑇 𝐼𝑛−1 =

(𝑛 − 1) × 𝑛

(𝑛 − 1) × 𝑛

𝑃𝑇 = (−1, … , −1)1×(𝑛−1)

𝐻 = (1,1, … , 1)1×𝑛

𝑘 = 1

𝑘 = 𝑛 − 1



• Example 7.22: for the code 𝐻7

Parity-check matrix in systematic form
𝐻 = (−𝑃𝑇|𝐼𝑛−𝑘)𝐺 = (𝐼𝑘|𝑃)

𝐺 =

𝑘 = 4



• Exercise 6.18
Prove the Singleton bound: if a code 𝐶 over 𝐹𝑞 has length 𝑛, 
minimum distance 𝑑, and 𝑀 code-words, then

log𝑞 𝑀 ≤ 𝑛 − 𝑑 + 1. 

• Theorem 7.23
If 𝐶 is a linear code of length 𝑛, dimension 𝑘, and minimum 
distance 𝑑, then

𝑑 ≤ 1 + 𝑛 − 𝑘.
• Two proofs

The Singleton Bound

Deleting 𝑑 − 1 symbols from each code-words in 𝐶, then 𝐶 still has M distinct 
words of length 𝑛 − 𝑑 + 1 over 𝐹𝑞 . 

There are at most 𝑞𝑛−𝑑+1 words of length 𝑛 − 𝑑 + 1 over 𝐹𝑞, so 𝑀 ≤ 𝑞𝑛−𝑑+1 

𝑀 = 𝑞𝑘

Generator of 𝐶 in systematic form 𝐺 = (𝐼𝑘|𝑃)

Weight of each row vector of 𝐺 ≤ 1 + 𝑛 − 𝑘 

So, 𝑑 ≤ 1 + 𝑛 − 𝑘 



• Example 7.24
• The Singleton bound is attained by 𝑅𝑛

• with 𝑘 = 1 and 𝑑 = n, 

• The Singleton bound is also attained by 𝑃𝑛

• with 𝑘 = 𝑛 - 1 and 𝑑 = 2; 

• But, not by 𝐻7, 
• with 𝑑 = 3 and 1 + 𝑛 - 𝑘 = 4, 

• Corollary 7.25
• A 𝑡-error-correcting linear [𝑛, 𝑘]-code requires at least 

2𝑡 check digits.

• Example 7.26
• The linear codes 𝑅3 and 𝐻7 both have 𝑡 = 1; the number 

of check digits is 𝑛 - 𝑘 = 2 or 3 respectively.

The Singleton Bound 𝑑 ≤ 1 + 𝑛 − 𝑘.



7.3 Minimum Distance of Linear Codes

• Theorem 7.27
• Let 𝐶 be a linear code of minimum distance 𝑑, and let 𝐻 be a 

parity-check matrix for 𝐶. Then 𝑑 is the minimum number of 
linearly dependent columns of 𝐻.

• Proof
• Let 𝑣 = 𝑣1𝑣2 … 𝑣𝑛 ∈ 𝑉 and 𝐻 = (𝑐1𝑐2 … 𝑐𝑛)

• 𝑣 ∈ 𝐶 ⇔ 𝑣𝐻𝑇 = 0 ⇔ 𝑣1𝑐1 + 𝑣2𝑐2 + ⋯ + 𝑣𝑛𝑐𝑛 = 0

• weight of 𝑣 in 𝐶

= number of non-zero 𝑣𝑖’s 

= number of 𝑐𝑖’s that are linearly dependent

• 𝑑 = minimum weight of code-words in 𝐶

= the minimum number of 𝑐𝑖’s that are linearly dependent

= the minimum number of linearly dependent columns of 𝐻



Minimum Distance of Linear Codes (Cont.)

• Meaning of linearly dependent of columns of 𝐻
• One column 𝒄𝒊 linearly dependent, then 𝒄𝒊 = 𝟎

• Two columns 𝒄𝒊 and 𝒄𝒋 linearly dependent, then 𝒄𝒊 is 
multiple of 𝒄𝒋 (or 𝒄𝒋 is multiple of 𝒄𝒊). 

• So, 𝑑 ≥ 3 if and only if the columns of H are non-zero 
and none is a multiple of any other.

• Example 7.28
• The parity-check matrix 𝐻 = (1 1 … 1) for 𝑃𝑛 has its 

columns non-zero and equal , so 𝑃𝑛 has minimum 
distance 𝑑 = 2.



• Example 7.29 
In the parity-check matrix 𝐻
for 𝑅𝑛, any set of 𝑛 - 1 columns 
are linearly independent, 
while 𝑐1 + ⋯ + 𝑐𝑛 = 0.
So 𝑑 = 𝑛.

• Example 7.30
Now, look at the parity-

check matrix 𝐻 for 𝐻7

Minimum Distance of Linear Codes (Cont.)
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