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Quick Review of Last Lecture

* Matrix Description of Linear Codes
* Linearcode C €V =F"andletdim(C) =k

Dual Code D of C:dim(D)=n — k
Orthogonal Code C* of C: D = C+ and C = D+
Examples:

. c=ct

« R,* =P, andP,* =R,

 The code H7l is a linear [7, 3]-code over F,
The conditions for H to be a parity-check matrix for C



7.2 Equivalence of Linear Codes

* The elementary row operations of matrix consist of
* permuting rows,
* multiplying a row by a non-zero constant, and
* replacing a row r; with r; + ar; where j # i and a # 0.

* Two linear codes C; and C, are equivalent if they have
generator matrices G; and G, which differ only by
elementary row operations and permutations of columns.

* Elementary row operations on generator G may change the
basis for C, but they do not change the subspace C.

* Permutations of columns of G may change C, but the new
code will differ from C only in the order of symbols within

code-words.



Equivalence of Linear Codes (Cont.)

* By systematically using elementary row operations and
column permutations, one can convert any generator matrix
into the form

1 ¥ x ... %
1 * % ... %

G=(I|P)= . ¢ : (7.2)
1 * x ... x*

 We then say that G (or C) is in systematic form.
* In this case, each @ = a; ...ax € F* is encoded as
u=aG =aj...a50541 ...0n

* where a; ... a; are information digits and a; ;¢ ...a,, = aP is
a block of n - k check digits.



Two Examples

* Example 7.18

* The generator matrices G for

the codes R,, and P, are in : . *i

systematic form, G = B

G=(1 1 1 '
( ) 11

* Example 7.109.
* The generator matrix G for H-, is not in systematic form.
e But, it can be transformed into systematic form.
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Equivalence of Linear Codes (Cont.)

* If we have a generator matrix G = (I |P) in systematic
form for a linear code C, then we can find a parity-
check matrix for C.

H=(-PT|I,_) (73
* This is the systematic form for a parity-check matrix

* Prove this by using Lemma 7.17
* Hhasn-krowsand n columns
* Its rows are independent
* GHY = I4(-P)+ PI,_y = -P+ P =0.



Parity-check matrix in systematic form

G = (Ix|P) H = (=P"|L_x)

* Example 7.20: For the code R,
k=1
G=11...1)ixn H=(-PT|l,_,) = (fl
P=(Q,.., 1)1><(n—1) —'1
* Example 7.21: For the code P,
k=n-1

-1 1
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1 -1
G ( : _1) Pr=Che Dk

H=(11,..,1)1xn



Parity-check matrix in systematic form
G = (Ix|P) H = (—P"|L_x)

* Example 7.22: for the code H,

k=4
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The Singleton Bound

 Exercise 6.18

Prove the Singleton bound: if a code C over F; has length n,
minimum distance d, and M code-words, then

logg,M <n—-d+1.

Deleting d — 1 symbols from each code-words in C, then C still has M distinct
words of lengthn — d + 1 over F,

There are at most g~ 4*1 words of length n — d + 1 over FysoM < gnatt

e Theorem 7.23

If C is a linear code of length n, dimension k, and minimum
distance d, then

Generator of C in systematic form G = (I} |P)

d<1+n-k.

e Two proofs Weight of each row vectorof G < 1+n—k

M = g* So,d<1+n—k




The Singleton Bound |d<1+n-k.

* Example 7.24
* The Singleton bound is attained by R,
e withk=1andd =n,
* The Singleton bound is also attained by P,
e withk=n-1andd = 2;
* But, not by H-,
e withd=3and1+n-k=4,
e Corollary 7.25

* A t-error-correcting linear [n, k]-code requires at least
2t check digits.

* Example 7.26

* The linear codes R; and H; both have t = 1; the number
of check digits isn - kK = 2 or 3 respectively.



7.3 Minimum Distance of Linear Codes

e Theorem 7.27

* Let C be alinear code of minimum distance d, and let H be a
parity-check matrix for C. Then d is the minimum number of
linearly dependent columns of H.

* Proof
 lLetv =v,v, .1, EVand H = (c1¢y ...Cp)
cvECSVH =0 vic; + ¢+ -+ v,c, =0
* weightofvinC
= number of non-zero v;’s
= number of ¢;’s that are linearly dependent
* d = minimum weight of code-words in C
=the minimum number of ¢;’s that are linearly dependent
= the minimum number of linearly dependent columns of H



Minimum Distance of Linear Codes (Cont.)

* Meaning of linearly dependent of columns of H
* One column c; linearly dependent, then ¢; = 0
* Two columns ¢; and ¢; linearly dependent, then c; is
multiple of ¢; (or c¢; is multiple of ¢;).

* So,d = 3 if and only if the columns of H are non-zero
and none is a multiple of any other.

* Example 7.28

* The parity-check matrix H = (11 ... 1) for P, has its
columns non-zero and equal, so P, has minimum
distance d = 2.



Minimum Distance of Linear Codes (Cont.)

* Example 7.29
In the parity-check matrix H 1 -1

for R, anysetof n-1columns g _ : ‘fl
are linearly independent, , __:1
while¢; + -+ ¢, = 0.
Sod =n.

* Example 7.30 6001111
Now, look at the parity- H=l0 1100 1 1
check matrix H for H, (1 010101
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