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Quick Review of Last Lecture (1)

* Matrix Description of Linear Codes
 Generator matrix G for C

Encoding of Source (Given data, to compute codeword)

Whether a Vector is a Code Word?

* Avector is a codeword if and only if it satisfies a set of
simultaneous linear equations

Parity-Check Matrix H for C

 Matrix of coefficients of the set of simultaneous linear
equations

* Avector v is a codeword if and only if vHT = 0
Three examples
* R,, P, H;



Quick Review of Last Lecture (2)

* Matrix Description of Linear Codes
 Linear code CSV=F" and letdim(C) = k
* Generator matrix G for Cisk X n
* Parity-Check Matrix Hfor Cis(n — k) Xn

* Example H;
Vg4 + V5 + vg +v7 =0,

en=7 k=4
.n_k:3 ‘Ug+'U3+’Uﬁ+U7:0,
v +v3 + vy + vy = 0.

1 110 0 00
c:(é?gié?g) 0001111
1 01 0 1 0 1



Dual Code of C

e Parity-Check Matrix H for C can be viewed as the matrix of a
linear transformation h:V - W = F"k

« v h(v) =vHT
* We have
« C =Kker(h) = {v:h(v) = 0}
« im(h) ={h(v):v eV}
« dim(V) = dim(ker(h)) + dim(im(h))
e H hasrank n-k.

* So, n-k rows of H forms a basis of a linear space D € V of
dimension n-k. This linear code, with generator matrix H,
called the dual code of C.



Orthogonal Code of C

e A scalar product on V = F™ is defined as
cu-v=~Wy...u) Wy..vy) =uv;+--+u,v, €EF

* u and v are orthogonal if u-v=0
* We define the orthogonal code of C as below
Ct={weV|vw=0 forall veC)}

 Then, we have D =C+, where D is dual code of C.
uv’ =u-v =) p(aH)'=vH"a’ =0al =0
C ={v|vH" =0} D =CtL

n—k — 1
D ={aH |a € F"™*} C=D



* Example 7.14

* Letg=2,letn=2m, and let C be the linear code with

basis vectors u; = e,;_1 + e,; fori =1, ..., m. we have
1
C=C—.

* Proof
For any i and j, we have

Ui * uj = (e2i-1 + €3;) (er—l + er)
= €pj—1€j—1 Tezi_1 €25+ €z €51t ey-e; =0

So, when j changes, we have u; € cl

So, when i changes, we have C C CJ-

Now, because dim(C) =m and 2m =n=dim(C) + dim(CJ-),
we have dim(C) = dim(CJ-)

So, C = C+



* Example 7.15
* The repetition code R_is spanned by1=1...1, so

Ri={weV|lw=0={weV|w + - +w, =0} =P,

e Similarly, we have

Pr={weV|(ei—e,)w=0fori=1,...,n—1}

={weV|w,=wyfori=1,...,n-1}

=R,.

A generator matrix for P,
and a parity-check matrix
forR,

A generator matrix for R,
and a parity-check matrix
for P,




* Example 7.16

 The code H7l is a linear [7, 3]-code over F,
e A generator matrix for H+ is the parity-check matrix H

* Taking linear combinations of the rows, we have Hy
includes eight codewords:
0001111 0110011 1010101 0111100
1011010 1100110 1101010 00O0OO0O0O0O

e The minimal distanced =4



* lemma /.17

* Let C be alinear [n, k]-code over F with generator
matrix G, and let H be a matrix over F with n columns
and n - k rows. Then H is a parity-check matrix for C if
and only if H has rank n - k and satisfies GH' = 0.

* Proof:
* The rows of H formn - k vectorsinV
* (1) GH" =0 if and only if
 These rows are orthogonal to those of G, i.e. € C+

e (2) H has rank n - k if and only if
* These rows are linearly independent, or equivalently,
* These rows form a basis of C*

e (1) +(2) if and only if

 H is a generator matrix for C+, i.e., a parity-check matrix for C.
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