Coding and Information Theory

 Chapter 6:Error-correcting Codes - B

Xuejun Liang

Chapter 6: Error-correcting Codes

1. Introductory Concepts
2. Examples of Codes
3. Minimum Distance
4. Hamming's Sphere-packing Bound
5. The Gilbert-Varshamov Bound
6. Hadamard Matrices and Codes

Quick Review of Last Lecture

- Introductory Concepts
- Galois Field: F
- Linear Code: $C \subseteq F^{n}$
- The rate of a code: $\quad R=\frac{\log _{q} M}{n} \quad R=\frac{k}{n}$
- Notes
- Chanel $\Gamma: A \rightarrow B$, where $A=B=F$
- Equiprobable, Nearest neighbor decoding
- Examples of Codes
- Repetition code R_{n} over a field F
- Parity-check code P_{n} over a field F
- Hamming Code H_{n}

Examples of Codes (Cont.)

- Example 6.6
- Suppose that C is a code of length n over a field F. Then we can form a code of length $\mathrm{n}+1$ over F, called the extended code \bar{C}. by
- Adjoining an extra digit u_{n+1} to every code-word \boldsymbol{u} $=u_{1} u_{2} \ldots u_{n} \in C$ such that $u_{1}+u_{2}+\cdots+u_{n+1}=0$.
- Clearly $|\bar{C}|=|C|$, and if C is linear then so is \bar{C}, with the same dimension
- Example: if $C=V=F^{n}$ then $\bar{C}=P_{n+1} \subset F^{n+1}$
- Example 6.7
- If C is a code of length n, we can form a punctured code C° of length $n-1$ by
- Choosing a coordinate position i, and deleting the symbol u_{i} from each codeword $u_{1} u_{2} \ldots u_{n} \in C$.

6.3 Minimum Distance

- Define the minimum distance of a code C to be

$$
\begin{equation*}
d=d(\mathcal{C})=\min \left\{d\left(\mathbf{u}, \mathbf{u}^{\prime}\right) \mid \mathbf{u}, \mathbf{u}^{\prime} \in \mathcal{C}, \mathbf{u} \neq \mathbf{u}^{\prime}\right\} \tag{6.3}
\end{equation*}
$$

- (n, M, d)-code
- A code of length n, with M code-words, and with minimum distance d.
- [n, k, d]-code
- A linear ($\mathrm{n}, \mathrm{M}, \mathrm{d}$)-code, of dimension k.
- Our aim is to choose codes C for which d is large, so that Pr_{E} will be small.

Minimum Distance (Cont.)

- Define the weight of any vector $v=v_{1} v_{2} \ldots v_{n} \in$ V to be

$$
\begin{equation*}
\mathrm{wt}(\mathbf{v})=d(\mathbf{v}, \mathbf{0}), \tag{6.4}
\end{equation*}
$$

- It is easy to see that for all $u, u^{\prime} \in V$, we have

$$
d\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=\mathrm{wt}\left(\mathbf{u}-\mathbf{u}^{\prime}\right)
$$

- Lemma 6.8
- If C is a linear code, then its minimum distance d is given by

$$
d=\min \{\omega t(\mathbf{v}) \mid \mathbf{v} \in \mathcal{C}, \mathbf{v} \neq \mathbf{0}\}
$$

- Proof: Lemma 6.8
- Let $d_{1}=\min \{\mathbf{w t}(\mathbf{v}) \mid \mathbf{v} \in \mathcal{C}, \mathbf{v} \neq \mathbf{0}\}$.
- Let $d_{2}=\min \left\{d\left(\mathbf{u}, \mathbf{u}^{\prime}\right) \mid \mathbf{u}, \mathbf{u}^{\prime} \in \mathcal{C}, \mathbf{u} \neq \mathbf{u}^{\prime}\right\}$
- Want to prove $d_{1}=d_{2}$

Minimum Distance (Cont.)

- We say that a code C corrects t errors, or is t-errorcorrecting, if, whenever a code-word $u \in C$ is transmitted and is then received with errors in at most t of its symbols, the resulting received word v is decoded correctly as u.
- Equivalently, whenever $u \in C$ and $v \in V$ satisfy $\mathrm{d}(u, v)$ $\leq t$, the decision rule Δ gives $\Delta(v)=u$.
- Example 6.9
- A repetition code R_{3} corrects one error, but not two.

Minimum Distance (Cont.)

- If u is sent and v is received, we call the vector $e=v-u$ the error pattern.
- $d(u, v)=w t(e)=$ the number of incorrect symbols
- A code corrects t errors if and only if it can correct all errorpatterns $e \in V$ of weight $\mathrm{wt}(e) \leq t$.
- Theorem 6.10
- A code C of minimum distance d corrects t errors if and only if $d \geq 2 t+1$. (Equivalently, C corrects up to $\left[\frac{d-1}{2}\right\rfloor$ errors.)
- Example 6.11
- A repetition code R_{n} of length n has minimum distance $d=n$, since $d\left(u, u^{\prime}\right)=n$ for all $u \neq u^{\prime}$ in R_{n}. This code therefore corrects $t=\lfloor(n-1) / 2\rfloor$ errors.
- Proof of Theorem 6.10
- A code C of minimum distance d corrects t errors if and only if $d \geq 2 t+1$.

Minimum Distance (Cont.)

- Example 6.12
- Exercise 6.3 shows that the Hamming code H_{7} has minimum distance $\mathrm{d}=3$, so it has $t=1$ (as shown in $\S 6.2$). Similarly, $\overline{H_{7}}$ has $\mathrm{d}=4$ (by Exercise 6.4), so this code also has $t=1$.
- Example 6.13
- A parity-check code P_{n} of length n has minimum distance $\mathrm{d}=2$; for instance, the code-words $\mathrm{u}=110$... 0 and $u^{\prime}=0=00 \ldots 0$ are distance 2 apart, but no pair are distance 1 apart. It follows that the number of errors corrected by P_{n} is 0 .

Minimum Distance (Cont.)

- C detects d-1 errors
- $d(u, v)=$ the number of incorrect symbols
- Example 6.14
- The codes R_{n} and P_{n} have $d=n$ and 2 respectively, so R_{n} detects n-1 errors, while P_{n} detects one; H_{7} has $d=$ 3 , so it detects two errors.

