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Quick Review of Last Lecture
• Decision Rules:

• Ideal observer rule using Ri,j or Qi,j

• Maximum likelihood rule using Pi,j.

• Examples

• An Example of Improved Reliability
• Sending each input symbol 𝑎 = 0 or 1 three times in succession

• Any subset 𝐶⊆𝐴n can be used for a set of code-words. 

• The transmission rate 

𝑏𝑗 → Δ 𝑏𝑗 = 𝑎𝑗∗

Pr𝐸 = 3𝑃𝑄2 + 𝑄3 = 𝑄2(3 − 2𝑄) ≈ 3𝑄2



5.3 Hamming Distance

• Let 𝒖 = 𝑢1…𝑢𝑛 and 𝒗 = 𝑣1…𝑣𝑛 be words of length 
𝑛 in some alphabet 𝐴, so 𝒖, 𝒗 ∈ 𝐴𝑛. The Hamming 
distance d(𝒖, 𝒗) between 𝒖 and 𝒗 is defined to be the 
number of subscripts 𝑖 such that 𝑢𝑖 ≠ 𝑣𝑖.
• 𝑑 𝑢, 𝑣 = 𝑖 | 𝑢𝑖 ≠ 𝑣𝑖

• Example 5.6
• Let 𝒖 = 01101 and 𝒗 = 01000 in 𝑍2

5. Then d(𝒖, 𝒗) = 2.

• Example 5.7
• We can regard the words in 𝑍2

3

as the eight vertices of a cube.



Hamming Distance (Cont.)

• Lemma 5.8

• Proof of (c)

𝑖 | 𝑢𝑖 ≠ 𝑤𝑖 ⊆ 𝑖 | 𝑢𝑖 ≠ 𝑣𝑖 ∪ 𝑖 | 𝑣𝑖 ≠ 𝑤𝑖

𝑖 | 𝑢𝑖 ≠ 𝑤𝑖 ≤ 𝑖 | 𝑢𝑖 ≠ 𝑣𝑖 + 𝑖 | 𝑣𝑖 ≠ 𝑤𝑖

• To transmit information through Γ, we choose a code 𝐶 ⊆
𝐴𝑛 for some 𝑛, and use the maximum likelihood decision 
rule.
• Decode each received word as the code-word most likely to 

have caused it. (Using forward probability 𝑃𝑖𝑗.)



• For simplicity, assume that Γ is the BSC, with P > Τ1 2, 
so A = B = 𝑍2 and 𝑟 = 2. 
• The maximum likelihood decision rule means for any 

output 𝑣 ∈ 𝑍2
𝑛, we decode 𝑣 as the code-word 𝑢 = Δ(𝑣) 

∈ 𝐶 which maximizes the forward probability Pr(𝑣 I 𝑢). 

• Note: a code-word 𝑢 which maximizes Pr(𝑣 I 𝑢) is one 
which minimizes d(𝑢, 𝑣).

If 𝑑 𝑢, 𝑣 = 𝑖 then 

Pr 𝑣|𝑢 = 𝑄𝑖𝑃𝑛−𝑖 = 𝑃𝑛
𝑄

𝑃

𝑖

• So, this is also called the nearest neighbor decoding

Hamming Distance (Cont.)



5.4 Statement of Shannon’s Theorem

• Informally
• Shannon’s Theorem says that if we use long enough 

code-words then we can send information through a 
channel Γ as accurately as we require, at a rate 
arbitrarily close to the capacity C of Γ.

• Theorem 5.9
• Let Γ be a binary symmetric channel with P > Τ1 2, so Γ

has capacity C = 1 - H(P) > 0, and let 𝛿, 𝜀 > 0. Then for 
all sufficiently large 𝑛 there is a code 𝐶 ⊆ 𝑍2

𝑛, of rate 𝑅
satisfying C − 𝜀 ≤ 𝑅 < C, such that nearest neighbor 
decoding gives error-probability Pr𝐸 < 𝛿.



Outline Proof of Shannon’s Theorem

• Let R < C, Randomly chose 𝐶 ⊂ 𝑍2
𝑛, 𝐶 = 2𝑛𝑅.

• Rate of 𝐶 = ൗ𝑙𝑜𝑔22
𝑛𝑅

𝑛 = 𝑅

• Sending 𝒖, expect to receive 𝒗 such that d(𝒖, 𝒗) ≈ 𝑛𝑄

• Receiving 𝒗, decode Δ 𝒗 = 𝒖 such that d(𝒖, 𝒗) ≈ 𝑛𝑄

• Using the nearest neighbor rule, if decoding is incorrect 
then there must be some 𝒖' ≠ 𝒖 in 𝐶 with d(𝒖',𝒗) ≤ d(𝒖,𝒗).

• So

• The upper bound on Pr𝐸 in (5.4) is equal to



• For any given 𝒗 and 𝑖, |{ 𝒖' ∈ 𝑍2
𝑛 : d(𝒖', 𝒗) = 𝑖 }| = 

𝑛
𝑖

• So, |{𝒖' ∈ 𝑍2
𝑛 : d(𝒖', 𝒗) ≤ 𝑛𝑄}| = σ𝑖≤𝑛𝑄

𝑛
𝑖

• Therefore

• Exercise 5.7



Outline Proof (Cont.)

• Putting 𝜆 = 𝑄 in Exercise 5.7, we have

• Thus (5.4) becomes

• Note: C = 1 - H(P) = 1 - H(Q). 

• Now R < C, so 2𝑛(𝑅−𝐶) → 0 as 𝑛 → ∞, and hence Pr𝐸 → 0
also.



5.5 The Converse of Shannon's Theorem

• Informally
• The converse of Shannon’s Theorem says that one can 

not do better than what the Shannon’s Theorem says.

• The converse of Shannon’s Theorem
• If C' > C then it is not true that for every 𝜀 > 0 there is a 

sequence of codes 𝐶, of lengths 𝑛 → ∞, and of rates R 
satisfying C' - 𝜀 ≤ R < C', such that Pr𝐸 → 0 as 𝑛 → ∞.

• The Fano bound 
• gives a lower bound on the error-probability. (See 

Theorem 5.10 on the next slide.) 



The Fano Bound

• Theorem 5.10 
• Let Γ be a channel with input Α and output Β. Then the 

error-probability PrE corresponding to any decision rule 
Δ for Γ satisfies

where 𝑟 is the number of symbols in Α

• Meaning of inequality (5.5)
• Given 𝑏𝑗, the receiver decodes 𝑎𝑗∗ = Δ(𝑏𝑗), which may 

or may not be the actual symbol 𝑎𝑖 transmitted.

• The left-hand side of (5.5) is the extra information the 
receiver needs (on average) in order to know 𝑎𝑖



The Fano Bound (Cont.)

• Meaning of inequality (5.5)
• This extra information can be divided into two parts:

a) Whether or not decoding is correct, that is, whether or 
not 𝑎𝑗∗ = 𝑎𝑖;

b) If decoding is incorrect, then which 𝑎𝑖(𝑖 ≠ 𝑗∗) out of   
𝑟-1 symbols was transmitted.

• The information in (a) has value 𝐻(Pr𝐸)

• The information in (b) has value at most Pr𝐸 log 𝑟 − 1

• Note: we have



Examples

• Example 5.11
• Let Γ be the BSC , and as a rather extreme example of a 

code let us take 𝐶 = 𝐴𝑛, so R = 1. 

• If 0 < P < 1 we have C = 1 - H(P) < 1, so R > C. 

• Using the identity function Δ(𝑢) = 𝑢 as a decision rule, 
we see that decoding is correct if and only if there are 
no errors, so Pr𝐸 = 1 − 𝑃𝑛 → 1 as 𝑛 → ∞.



Examples (Cont.)

• Example 5.12
• The Hamming codes of length 𝑛 of the form 2𝑐 − 1 and 

rate R = (𝑛 - 𝑐)/𝑛, so R → 1 as n → ∞. 

• If we use a BSC with 0 < P < 1, then C = 1 - H(P) < 1 and 
hence R > C for all sufficiently large 𝑛.

• The nearest neighbor decoding is correct if and only if 
there is at most one error (shall see this in §7.4), so 
Pr𝐸 = 1 − 𝑃𝑛 − 𝑛𝑃𝑛−1𝑄 → 1 as 𝑛 → ∞.



5.6 Comments on Shannon's Theorem

• Theorem 5.13 (The general form of Shannon's 
Theorem)
• Let Γ be an information channel with capacity C > 0, and 

let 𝛿, 𝜀 > 0. For all sufficiently large 𝑛 there is a code 𝐶
of length 𝑛, of rate 𝑅 satisfying C − 𝜀 ≤ 𝑅 < C, together 
with a decision rule which has error-probability PrE < 𝛿.

• Comment 5.14
• In order to achieve values of R close to C and PrE close to 

0, one may have to use a very large value of n. 

• This means that code-words are very long, so encoding 
and decoding may become difficult and time-consuming.



Comments on Shannon's Theorem

• Comment 5.14
• Moreover, if n is large then the receiver experiences 

delays while waiting for complete codewords to come 
through; when a received word is decoded, there is a 
sudden burst of information, which may be difficult to 
handle.

• Comment 5.15
• Shannon's Theorem tells us that good codes exist, but 

neither the statement nor the proof give one much help 
in finding them. 



Comment 5.15 (Cont.)

• The proof shows that the "average" code is good, but 
there is no guarantee that any specific code is good: this 
has to be proved by examining that code in detail.

• One might choose a code at random, as in the proof of 
the Theorem, and there is a reasonable chance that it 
will be good. 

• However, random codes are very difficult to use: ideally, 
one wants a code to have plenty of structure, which can 
then be used to design effective algorithms for encoding 
and decoding. 

• We will see examples of this in Chapters 6 and 7, when 
we construct specific codes with good transmission rates 
or error-probabilities.
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