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Quick Review of Last Lecture (1)
• System Entropies for the Binary Symmetric Channel

• Extension of Shannon's First Theorem to Information          

Channels

• Mutual Information

𝐼(Α, Β) ≥ 0



Quick Review of Last Lecture (2)

• Mutual Information for the Binary 

Symmetric Channel

• Channel Capacity C

• The BSC has channel capacity            

C = 1 - H(P) attained when the 

input satisfies p = Τ1 2

C = max{𝐼 Α, Β ∶ 𝐴 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 Γ }
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The aim of this chapter

• Shannon’s Fundamental Theorem states that
• the capacity C of Γ is the least upper bound for the rates 

at which one can transmit information accurately 
through Γ.

• We will look at a simple example of how this 
accurate transmission might be achieved.



5.1 Decision Rules

• A decision rule, or a decoding function Δ: 𝐵 → 𝐴

• 𝑏𝑗 → Δ 𝑏𝑗 = 𝑎𝑗∗

• Meaning: receiver sees 𝑏𝑗 and decides 𝑎𝑖 = 𝑎𝑗∗ was sent

Example 5.1
Let Γ be the BSC, so that A = B = 𝑍2. If the receiver trusts 
this channel, then Δ should be the identity function.

The average probability Pr𝐶 of correct decoding is

where                                                   and



Decision Rules (Cont.)

• The error probability Pr𝐸 (the average probability 
of incorrect decoding) is

• Ideal observer rule
• Minimizes Pr𝐸, or equivalently, which maximizes Pr𝐶

• How to maximize Pr𝐶

• For each j, we choose 𝑖 = 𝑗* to maximize the backward 
probability Pr 𝑎𝑖 𝑏𝑗 = 𝑄𝑖𝑗. Or

• For each j, we choose i = j* to maximize the joint 
probability 𝑅𝑖𝑗 = 𝑞𝑗𝑄𝑖𝑗.



Decision Rules (Cont.)

• Example 5.2
• Γ is the BSC, compute the Ideal observer rule Δ.

• A maximum likelihood rule
• For each j, we choose 𝑖 = 𝑗* to maximize the forward 

probability Pr 𝑏𝑗 𝑎𝑖 = 𝑃𝑖𝑗.



Example 5.3

• Let us apply the maximum likelihood rule ∆ to the BSC, 
where 𝑃 > Τ1 2 and compute Pr𝐶 and Pr𝐸. (input 
probabilities 𝑝, ҧ𝑝)



Example 5.4

• For a specific illustration, let us return to Example 4.5, 
where P = 0.8 and 𝑝 = 0.9.

• Compare the maximum likelihood rule and the ideal 
observer rule
• Maximum likelihood rule

• Ideal observer rule

=
0.9 × 0.8 0.9 × 0.2
0.1 × 0.2 0.1 × 0.8

=
0.72 0.18
0.02 0.08



Example 5.5

• Let Γ be the binary erasure channel (BEC) in Example 4.2, 
with P > 0. Compute the maximum likelihood rule, and 
compute Pr𝐶 and Pr𝐸. (input probabilities 𝑝, ҧ𝑝) 

(𝑅𝑖,𝑗) =
𝑝 0
0 ҧ𝑝

𝑃 0 ത𝑃
0 𝑃 ത𝑃

=  
𝑝𝑃 0 𝑝 ത𝑃

0 ҧ𝑝𝑃 ҧ𝑝 ത𝑃

(𝑃𝑖,𝑗) =  𝑃 0 ത𝑃
0 𝑃 ത𝑃



5.2 An Example of Improved Reliability

• Given an unreliable channel, how can we transmit 
information through it with greater reliability?

• Considering BSC with 1 > P > Τ1 2. 

1) the maximum likelihood rule: ∆ 0 = 0 𝑎𝑛𝑑 ∆ 1 = 1

2) the error-probability: Pr𝐸 = ത𝑃 = 𝑄

3) the channel capacity: C = 1 - H(P)



• Now, sending each input symbol 𝑎 = 0 or 1 three times in 
succession. So
• The input consists of two binary words 000 and 111.
• the output consists of eight binary words 000, 001, 010, 100, 

011, 101, 110, and 111.
• Transmission rate is Τ1 3

• The forward probabilities for this new input and output

• The maximum likelihood rule, called majority decoding

An Example of Improved Reliability (Cont.)

000     001      010       100      011      101       110     111

000

111



An Example of Improved Reliability (Cont.)

• The forward probabilities for this new input and output

• The maximum likelihood rule, called majority decoding

• A new binary symmetric channel Γ′

000     001      010       100      011      101       110     111

000

111

Pr𝐶 = 𝑃3 + 3𝑃2𝑄

Pr𝐸 = 3𝑃𝑄2 + 𝑄3 = 𝑄2(3 − 2𝑄) ≈ 3𝑄2



Generalized Idea 

• If Γ is a channel with an input Α having an alphabet 
𝐴 of 𝑟 symbols, then any subset 𝐶 ⊆ 𝐴𝑛 can be 
used as a set of code-words which are transmitted 
through Γ
• For instance, the repetition code 𝑅𝑛 over A consists of 

all the words 𝑤 = 𝑎𝑎 . . . 𝑎 of length 𝑛 such that 𝑎 ∈ 𝐴.

• In this case, 𝐶 = 𝑟 = 𝑟1. So the rate is Τ1 𝑛.

• In general, 𝐶 = 𝑟𝑘. So the rate is Τ𝑘 𝑛.

• The transmission rate can be defined as
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