Coding and Information Theory

 Chapter 4 Information ChannelsXuejun Liang

This is the second lecture of chapter 4

Quick Review of Last Lecture

- Notation and Definitions
- Information channel: Input A $\left(p_{i}\right)$ and Output B $\left(q_{j}\right)$
- Binary symmetric channel (BSC)
- Binary erasure channel (BEC)
- Binary channel (BC)
- Forward probabilities $\left(P_{i j}\right)$ and channel matrix $\left(\mathrm{M}=\left(P_{i j}\right)\right)$
- Combining two channels
- Sum and Product
- The channel relationships
- The backward probabilities $\left(Q_{i j}\right)$
- The joint probabilities $\left(R_{i j}\right)$
- Bayes' Formula

$$
\sum_{i=1}^{r} p_{i} P_{i j}=q_{j}
$$

$$
Q_{i j}=\frac{p_{i}}{q_{j}} P_{i j}
$$

$$
R_{i j}=p_{i} P_{i j}=q_{j} Q_{i j}
$$

4.2 The Binary Symmetric Channel

- Binary symmetric channel (BSC)
- $\mathrm{A}=\mathrm{B}=Z_{2}=\{0,1\}$.
- the channel matrix has the form

$$
M=\left(\begin{array}{ll}
P_{00} & P_{01} \\
P_{10} & P_{11}
\end{array}\right)=\left(\begin{array}{cc}
P & \bar{P} \\
\bar{P} & P
\end{array}\right)
$$

for some P where $0 \leq P \leq 1$

- The input probabilities have the form

$$
\begin{aligned}
& p_{0}=\operatorname{Pr}(a=0)=p, \\
& p_{1}=\operatorname{Pr}(a=1)=\bar{p},
\end{aligned}
$$

for some p such that $0 \leq p \leq 1$

- The channel relationships for $\mathrm{BSC}=$?

$$
\begin{aligned}
& q_{0}=\operatorname{Pr}(b=0)=p P+\bar{p} \bar{P}, \\
& q_{1}=\operatorname{Pr}(b=1)=p \bar{P}+\bar{p} P ;
\end{aligned}
$$

$$
\sum_{i=1}^{r} p_{i} P_{i j}=q_{j}
$$

writing $q_{0}=q$ and $q_{1}=\bar{q}$ we then have

$$
(q, \bar{q})=(p, \bar{p})\left(\begin{array}{ll}
P & \bar{P} \\
\bar{P} & P
\end{array}\right)
$$

- Bayes' formula for BSC = ?

$$
\begin{array}{ll}
Q_{00}=\frac{p P}{p P+\bar{p} \bar{P}}, & Q_{10}=\frac{\bar{p} \bar{P}}{p P+\bar{p} \bar{P}} \\
Q_{01}=\frac{p \bar{P}}{p \bar{P}+\bar{p} P}, & Q_{11}=\frac{\bar{p} P}{p \bar{P}+\bar{p} P}
\end{array}
$$

$$
Q_{i j}=\frac{p_{i} P_{i j}}{\sum_{k=1}^{r} p_{k} P_{k j}}
$$

- Example 4.4
- Let the input A be defined by putting $p=1 / 2$
- Probabilities of the output symbols: $q_{0}=$? And $q_{1}=$?
- The backward probabilities: $Q_{00}, Q_{01}, Q_{10}, Q_{11},=$?

$$
\begin{aligned}
& q_{0}=p P+\bar{p} \bar{P} \\
& q_{1}=p \bar{P}+\bar{p} P
\end{aligned}
$$

$$
Q_{00}=\frac{p P}{p P+\bar{p} \bar{P}} \quad Q_{11}=\frac{\bar{p} P}{p \bar{P}+\bar{p} P} \quad Q_{10}=\frac{\bar{p} \bar{P}}{p P+\bar{p} \bar{P}} \quad Q_{01}=\frac{p \bar{P}}{p \bar{P}+\bar{p} P}
$$

- Example 4.5
- Suppose that $P=0.8$ and $p=0.9$

$$
Q_{i j}=\frac{p_{i}}{q_{j}} P_{i j}
$$

- Probabilities of the output symbols: $q_{0}=$? And $q_{1}=$?

$$
\begin{aligned}
& q_{0}=p P+\bar{p} \bar{P} \\
& q_{1}=p \bar{P}+\bar{p} P
\end{aligned}
$$

- The backward probabilities: $Q_{00}, Q_{01}, Q_{10}, Q_{11}=$?
$Q_{00}=\frac{p_{0} P_{00}}{q_{0}}$
$Q_{10}=\frac{p_{1} P_{10}}{q_{0}}$
$Q_{01}=\frac{p_{0} P_{01}}{q_{1}}$
$Q_{11}=\frac{p_{1} P_{11}}{q_{1}}$
- Example 4.5 (Cont.)
- Necessary and sufficient conditions on p and P for

$$
Q_{00}>Q_{10} \text { and } Q_{01}>Q_{11}
$$

$$
\begin{aligned}
& Q_{00}=\frac{p_{0} P_{00}}{q_{0}} \\
& Q_{10}=\frac{p_{1} P_{10}}{q_{0}} \\
& \text { •Exampe } 4.5 \text { (cont.) } \\
& \text { - Necessary andsufficientanditios onpand Por } \\
& l_{m}>Q_{10} \text { and } \mathrm{O}_{\text {On }}>\mathrm{O}_{11} \\
& Q_{11}=\frac{p_{1} P_{11}}{q_{1}}
\end{aligned}
$$

4.3 System Entropies

- The input A and the output B of a channel Γ
- the input entropy $\quad H(\mathcal{A})=\sum_{i} p_{i} \log \frac{1}{p_{i}}$
- the output entropy $H(\mathcal{B})=\sum_{j} q_{j} \log \frac{1}{q_{j}}$
- If $b=b_{j}$ is received, then uncertainty about A is the conditional entropy

$$
H\left(\mathcal{A} \mid b_{j}\right)=\sum_{i} \operatorname{Pr}\left(a_{i} \mid b_{j}\right) \log \frac{1}{\operatorname{Pr}\left(a_{i} \mid b_{j}\right)}=\sum_{i} Q_{i j} \log \frac{1}{Q_{i j}}
$$

- the equivocation of A with respect to B

$$
H(\mathcal{A} \mid \mathcal{B})=\sum_{j} q_{j} H\left(\mathcal{A} \mid b_{j}\right)=\sum_{j} q_{j}\left(\sum_{i} Q_{i j} \log \frac{1}{Q_{i j}}\right)=\sum_{i} \sum_{j} R_{i j} \log \frac{1}{Q_{i j}}
$$

System Entropies (Cont.)

- Similarly, if a_{i} is sent, then the uncertainty about B is the conditional entropy

$$
H\left(\mathcal{B} \mid a_{i}\right)=\sum_{j} \operatorname{Pr}\left(b_{j} \mid a_{i}\right) \log \frac{1}{\operatorname{Pr}\left(b_{j} \mid a_{i}\right)}=\sum_{j} P_{i j} \log \frac{1}{P_{i j}}
$$

- the equivocation of B with respect to A

$$
H(\mathcal{B} \mid \mathcal{A})=\sum_{i} p_{i} H\left(\mathcal{B} \mid a_{i}\right)=\sum_{i} p_{i}\left(\sum_{j} P_{i j} \log \frac{1}{P_{i j}}\right)=\sum_{i} \sum_{j} R_{i j} \log \frac{1}{P_{i j}}
$$

- the joint entropy

$$
H(\mathcal{A}, \mathcal{B})=\sum_{i} \sum_{j} \operatorname{Pr}\left(a_{i}, b_{j}\right) \log \frac{1}{\operatorname{Pr}\left(a_{i}, b_{j}\right)}=\sum_{i} \sum_{j} R_{i j} \log \frac{1}{R_{i j}}
$$

System Entropies (Cont.)

- If A and B are statistically independent, i.e. $R_{i j}=p_{i} q_{j}$, then

$$
\begin{equation*}
H(\mathcal{A}, \mathcal{B})=H(\mathcal{A})+H(\mathcal{B}) \tag{4.5}
\end{equation*}
$$

- In general, A and B are related, rather than independent, then

$$
\begin{align*}
& H(\mathcal{A}, \mathcal{B})=H(\mathcal{A})+H(\mathcal{B} \mid \mathcal{A}) \tag{4.6}\\
& H(\mathcal{A}, \mathcal{B})=H(\mathcal{B})+H(\mathcal{A} \mid \mathcal{B}) \tag{4.7}
\end{align*}
$$

- We call $H(\mathrm{~A}), H(\mathrm{~B}), H(\mathrm{~A} \mid \mathrm{B}), H(\mathrm{~B} \mid \mathrm{A})$, and $H(\mathrm{~A}, \mathrm{~B})$ the system entropies.

4.4 System Entropies for the Binary Symmetric Channel

- The input and output entropies for BSC are

$$
\begin{aligned}
H(\mathcal{A}) & =-p \log p-\bar{p} \log \bar{p}=H(p), \\
H(\mathcal{B}) & =-q \log q-\bar{q} \log \bar{q}=H(q),
\end{aligned}
$$

where $q=p P+\bar{p} \bar{P}$.

- Definition: A function $f:[0,1] \rightarrow R$ is strictly convex, if for $a, b \in[0,1]$ and $x=\lambda a+\bar{\lambda} b$ with $0 \leq \lambda \leq 1$,

$$
f(x) \geq \lambda f(a)+\bar{\lambda} f(b),
$$

with equality if and only if $x=a$ or b, that is, $a=b$ or $\lambda=$ 0 or 1 .

System Entropies for BSC (Cont.)

- Lemma 4.6
- If a function $f:[0,1] \rightarrow R$ is continuous on the interval $[0,1]$ and twice differentiable on $(0,1)$, with $\mathrm{f}^{\prime \prime}(\mathrm{x})<0$ for all $x \in$ $(0,1)$, then f is strictly convex.
- Corollary 4.7
- The entropy function $H(p)$ is strictly convex on $[0,1]$.

$\mathrm{f}(\lambda a+\bar{\lambda} b) \geq \lambda f(a)+\bar{\lambda} f(b)$

Figure 4.5

$$
H(p P+\bar{p} \bar{P}) \geq P H(p)+\bar{P} H(\bar{p})
$$

$$
H(p P+\bar{p} \bar{P}) \geq p H(P)+\bar{p} H(\bar{P})
$$

System Entropies for BSC (Cont.)

- The BSC satisfies

$$
\begin{equation*}
H(\mathcal{B}) \geq H(\mathcal{A}), \tag{4.8}
\end{equation*}
$$

with equality if and only if $p=1 / 2$ or the channel is totally unreliable ($P=0$) or reliable ($\mathrm{P}=1$)

Transmission through the BSC generally increases uncertainty

Figure 4.5

$$
H(p P+\bar{p} \bar{P}) \geq P H(p)+\bar{P} H(\bar{p})
$$

Note in BSC, $q=p P+\bar{p} \bar{P}$

