Coding and Information Theory Chapter 4 Information Channels

Xuejun Liang

This is the first lecture of chapter 4

Quick Review of Last Lecture

• Shannon-Fane Coding examples

 $l_i = \lceil \log_2(1/p_i) \rceil = \min\{n \in \mathbf{Z} \mid 2^n \ge 1/p_i\}$

• Entropy of Extensions and Products

 $H_r(S^n) = nH_r(S).$

Shannon's First Theorem

$$\lim_{n\to\infty}\frac{L_n}{n}=H_r(\mathcal{S})\,.$$

• An Example of Shannon's First Theorem

S has two symbols s_1 , s_2 of probabilities $p_i = 2/3$, 1/3

Chapter 4: Information Channels

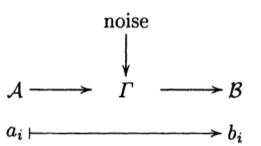
- 1. Notation and Definitions
- 2. The Binary Symmetric Channel
- 3. System Entropies
- 4. System Entropies for the Binary Symmetric Channel
- 5. Extension of Shannon's First Theorem to Information Channels
- 6. Mutual Information
- 7. Mutual Information for the Binary Symmetric Channel
- 8. Channel Capacity

The aim of this chapter

- We Consider
 - a source sending messages through an unreliable (or noisy) channel to a receiver
- Our aim here is
 - to measure how much information is transmitted, and how much is lost in this process, using several different variations of the entropy function, and then
 - to relate this to the average word-length of the code used.

4.1 Notation and Definitions

- Information channel Γ
- Input of Γ: Source A,



• with finite alphabet A of symbols $a = a_1, ..., a_r$, having probabilities

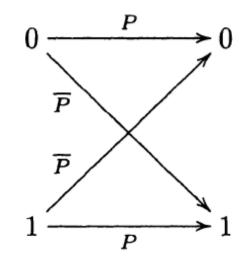
$$p_i = \Pr(a = a_i)$$
 where
 $0 \le p_i \le 1$ and $\sum_{i=1}^r p_i = 1$

- Output of Γ: Source B,
 - with a finite alphabet B of symbols $b = b_1, \dots, b_s$, having probabilities

$$q_j = \Pr(b = b_j)$$
 where
 $0 \le q_j \le 1$ and $\sum_{j=1}^{s} q_j = 1$

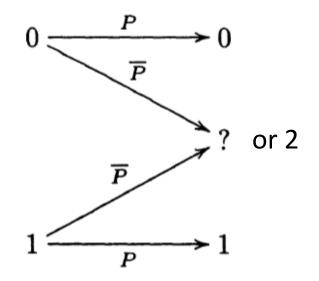
Example 4.1

- Binary symmetric channel (BSC)
 - $A = B = Z_2 = \{0, 1\}.$
 - Each input symbol a = 0 or 1 is correctly transmitted with probability P, and is incorrectly transmitted (as $\overline{a} = 1 - a$) with probability $\overline{P} = 1 - P$, for some constant P ($0 \le P \le 1$).



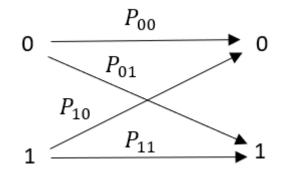
Example 4.2

- Binary erasure channel (BEC)
 - $A = Z_2 = \{0, 1\}.$
 - $B = \{0, 1, ?\}$ (or $\{0, 1, 2\}$).
 - Each input symbol a = 0 or 1 is correctly transmitted with probability P, and is erased (or made illegible) with probability \$\overline{P}\$, indicated by an output symbol b = ? (or 2)



Example: Binary Channel (BC)

- Binary channel (BC)
 - $A = B = Z_2 = \{0, 1\}.$
 - Input symbol a = 0 is correctly transmitted with probability P_{00} and is incorrectly transmitted with probability $P_{01} = 1 - P_{00}$
 - Input symbol a = 1 is correctly transmitted with probability P_{11} and is incorrectly transmitted with probability $P_{10} = 1 - P_{11}$



Forward Probabilities

- Forward probabilities of Γ

$$P_{ij} = \Pr\left(b = b_j \mid a = a_i\right) = \Pr\left(b_j \mid a_i\right)$$

• We have
$$\sum_{j=1}^{s} P_{ij} = 1$$

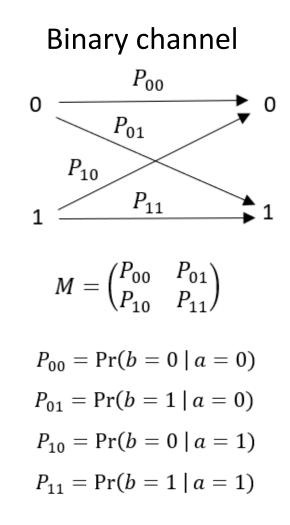
• The channel matrix
$$M = (P_{ij}) = \begin{pmatrix} P_{11} & \dots & P_{1s} \\ \vdots & & \vdots \\ P_{r1} & \dots & P_{rs} \end{pmatrix}$$

Channel Matrix Example – BC

Channel: r input symbols s output symbols

$$M = (P_{ij}) = \begin{pmatrix} P_{11} & \dots & P_{1s} \\ \vdots & & \vdots \\ P_{r1} & \dots & P_{rs} \end{pmatrix}$$
$$\sum_{j=1}^{s} P_{ij} = 1$$

 $P_{ij} = \Pr\left(b = b_j \mid a = a_i\right) = \Pr\left(b_j \mid a_i\right)$



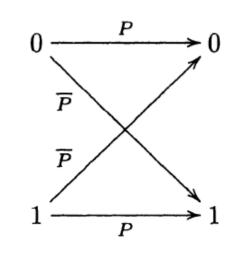
Channel Matrix Example – BSC

Channel: r input symbols s output symbols

$$M = (P_{ij}) = \begin{pmatrix} P_{11} & \dots & P_{1s} \\ \vdots & & \vdots \\ P_{r1} & \dots & P_{rs} \end{pmatrix}$$
$$\sum_{j=1}^{s} P_{ij} = 1$$

 $P_{ij} = \Pr\left(b = b_j \mid a = a_i\right) = \Pr\left(b_j \mid a_i\right)$

BSC



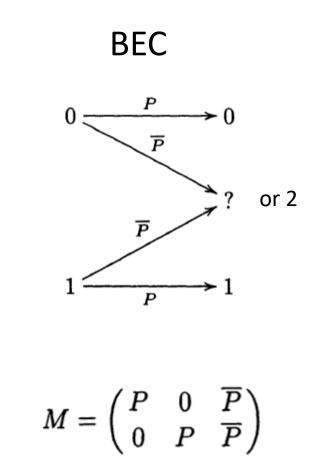
$$M = \begin{pmatrix} P & \overline{P} \\ \overline{P} & P \end{pmatrix}$$

Channel Matrix Example – BEC

Channel: r input symbols s output symbols

$$M = (P_{ij}) = \begin{pmatrix} P_{11} & \dots & P_{1s} \\ \vdots & & \vdots \\ P_{r1} & \dots & P_{rs} \end{pmatrix}$$
$$\sum_{j=1}^{s} P_{ij} = 1$$

 $P_{ij} = \Pr\left(b = b_j \mid a = a_i\right) = \Pr\left(b_j \mid a_i\right)$



Combining two channels

• Sum $\Gamma+\Gamma'$

- If Γ and Γ' have disjoint input alphabets A and A', and disjoint output alphabets B and B', then the sum $\Gamma + \Gamma'$ has input and output alphabets $A \cup A'$ and $B \cup B'$.
- Each input symbol is transmitted through Γ or Γ' , so the channel matrix is a block matrix

$$\begin{pmatrix} M & O \\ O & M' \end{pmatrix}$$

where *M* and *M'* are the channel matrices for Γ and Γ' .

Combining two channels

- Product $\Gamma \times \Gamma'$
 - The input and output alphabets are A x A' and B x B'
 - The sender transmits a pair $(a, a') \in A \times A'$ by simultaneously sending a through Γ and a' through Γ'
 - A pair $(b, b') \in B \times B'$ is received
 - Thus the forward probabilities are

 $\Pr((b, b') | (a, a')) = \Pr(b | a) . \Pr(b' | a')$

- So the channel matrix is the **Kronecker product** $M \otimes M'$ of the matrices M and M' for Γ and Γ' .
 - if $M = (P_{ij})$ and $M' = (P'_{kl})$ are $r \times s$ and $r' \times s'$ matrices, then $M \otimes M'$ is an $rr' \times ss'$ matrix, with entries $P_{ij}P'_{kl}$

Example

• If Γ and Γ' are binary symmetric channels, with channel matrices

$$M = \begin{pmatrix} P & \overline{P} \\ \overline{P} & P \end{pmatrix} \quad \text{and} \quad M' = \begin{pmatrix} P' & \overline{P'} \\ \overline{P'} & P' \end{pmatrix}$$

• then $\Gamma + \Gamma'$ and $\Gamma \times \Gamma'$ have channel matrices

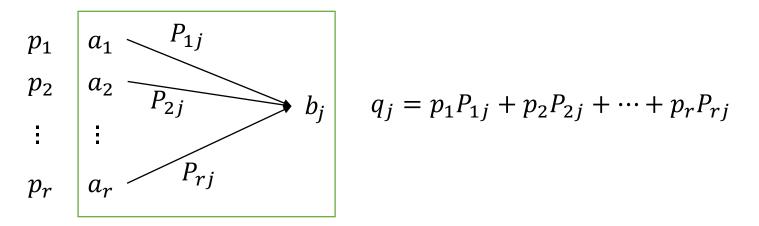
			0',						(1,1')	
0	P	\overline{P}	0	0 \		(PP'	$\overline{P}P'$	$P\overline{P'}$	$\overline{P} \overline{P'}$	(0,0')
1	\overline{P}	Р	0	0	and	$\overline{P}P'$	PP'	$\overline{P}\overline{P'}$	$P\overline{P'}$	(1,0')
0'	0	0	P'	$\overline{P'}$	and	$P\overline{P'}$	$\overline{P} \overline{P'}$	PP'	$\overline{P}P'$	(0,1')
1'	$\begin{pmatrix} P\\ \overline{P}\\ 0\\ 0\\ 0 \end{pmatrix}$	0	$\overline{P'}$	P'		$\begin{pmatrix} PP'\\ \overline{P}P'\\ P\overline{P'}\\ \overline{P}\overline{P'}\\ \overline{P}\overline{P'} \end{pmatrix}$	$P\overline{P'}$	$\overline{P}P'$	PP' /	(1,1')

The channel relationships

• The channel relationships

$$\sum_{i=1}^{'} p_i P_{ij} = q_j \qquad (4.2)$$

Where $p_i = \Pr(a = a_i) = \Pr(a_i)$ $q_j = \Pr(b = b_j) = \Pr(b_j)$ and $P_{ij} = \Pr(b = b_j | a = a_i) = \Pr(b_j | a_i)$



The channel relationships: Cont.

• The channel relationships

$$\sum_{i=1}^{r} p_i P_{ij} = q_j \qquad (4.2)$$

(4.2) can be written as

$$\mathbf{p}M = \mathbf{q} \,. \tag{4.2'}$$

Where, $p = (p_1, p_2, ..., p_r)$, $q = (q_1, q_2, ..., q_s)$, and $M = (P_{ij})_{r \times s}$

- The backward probabilities $Q_{ij} = \Pr(a = a_i \mid b = b_j) = \Pr(a_i \mid b_j)$
- The joint probabilities

$$R_{ij} = \Pr(a = a_i \text{ and } b = b_j) = \Pr(a_i, b_j)$$

Bayes' Formula

• Bayes' Formula

$$Q_{ij} = \frac{p_i}{q_j} P_{ij} \qquad (4.3)$$

provided
$$q_j \neq 0$$
.

$$p_i P_{ij} = \Pr(a_i) \Pr(b_j \mid a_i)$$
$$= \Pr(a_i, b_j) = R_{ij}$$

$$q_j Q_{ij} = \Pr(b_j) \Pr(a_i \mid b_j)$$
$$= \Pr(a_i, b_j) = R_{ij}$$

• Combining this with (4.2) we get

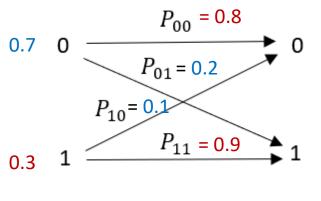
$$Q_{ij} = \frac{p_i P_{ij}}{\sum_{k=1}^r p_k P_{kj}} \quad (4.4) \qquad \qquad \sum_{i=1}^r p_i P_{ij} = q_j \qquad (4.2)$$

Example: In a binary communication system below. Given

$$p_{0} = P(a = 0) = 0.7,$$

$$P_{01} = P(b = 1 | a = 0) = 0.2 \text{ and}$$

$$P_{10} = P(b = 0 | a = 1) = 0.1,$$
(a) Find the channel matrix M
(b) Find $q_{0} = P(b = 0)$ and $q_{1} = P(b = 1).$
(c) Find $R_{ij} = P(a = i | b = j)$, for $i, j = 0, 1$
(d) Find $Q_{ij} = P(a = i | b = j)$, for $i, j = 0, 1$



To solve (a) just using definition

(a)
$$M = (P_{ij}) = (P(b = j \mid a = i)) = \begin{pmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix}$$

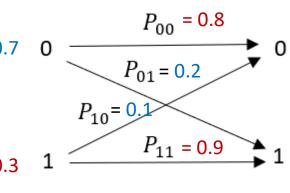
To solve (b) using (4.2) $\sum_{i=1}^{r} p_i P_{ij} = q_j$ or (4.2') $\mathbf{p}M = \mathbf{q}$.
(b) $(q_0 \quad q_1) = (p_0 \quad p_1)(P_{ij}) = (0.7 \quad 0.3) \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix} = (0.59 \quad 0.41)$

Example: In a binary communication system below. Given

$$p_{0} = P(a = 0) = 0.7,$$

$$P_{01} = P(b = 1 | a = 0) = 0.2 \text{ and}$$

$$P_{10} = P(b = 0 | a = 1) = 0.1,$$
(a) Find the channel matrix M
(b) Find $q_{0} = P(b = 0)$ and $q_{1} = P(b = 1).$
(c) Find $R_{ij} = P(a = i | b = j)$, for $i, j = 0, 1$
(d) Find $Q_{ij} = P(a = i | b = j)$, for $i, j = 0, 1$



To solve (c) and (d) using $R_{ij} = p_i P_{ij} = q_j Q_{ij}$

(c)
$$\begin{pmatrix} R_{ij} \end{pmatrix} = \begin{pmatrix} p_0 & 0 \\ 0 & p_1 \end{pmatrix} \begin{pmatrix} P_{ij} \end{pmatrix} = \begin{pmatrix} 0.7 & 0 \\ 0 & 0.3 \end{pmatrix} \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix} = \begin{pmatrix} 0.56 & 0.14 \\ 0.03 & 0.27 \end{pmatrix}$$

(d)
$$(Q_{ij}) = (R_{ij}) \begin{pmatrix} 1/q_0 & 0 \\ 0 & 1/q_1 \end{pmatrix} = \begin{pmatrix} 0.56 & 0.14 \\ 0.03 & 0.27 \end{pmatrix} \begin{pmatrix} 1/0.59 & 0 \\ 0 & 1/0.41 \end{pmatrix}$$

= $\begin{pmatrix} 0.9492 & 0.3415 \\ 0.0508 & 0.6585 \end{pmatrix}$