Coding and Information Theory

$$
\begin{gathered}
\text { Chapter } 3 \\
\text { Entropy (C) }
\end{gathered}
$$

Xuejun Liang

This is the third lecture of chapter 3

Chapter 3: Entropy

3.1 Information and Entropy
3.2 Properties of the Entropy Function
3.3 Entropy and Average Word-length
3.4 Shannon-Fane Coding
3.5 Entropy of Extensions and Products
3.6 Shannon's First Theorem
3.7 An Example of Shannon's First Theorem

Quick Review of Last Lecture

Theorem 3.11: If C is any uniquely decodable r-ary code for a source S, then $L(C) \geq H_{r}(S)$.

Corollary 3.12: $L(C)=H_{r}(S)$ if and only if $\log _{r}\left(p_{i}\right)$ is an integer for each i, that is, each $p_{i}=r^{e_{i}}$ for some integer $e_{i} \leq 0$
Efficiency $\quad \eta=\frac{H_{r}(\mathcal{S})}{L(\mathcal{C})}, \quad$ Redundancy $\bar{\eta}=1-\eta$.

A Shannon-Fano code C for S has word lengths $\quad l_{i}=\left\lceil\log _{r}\left(1 / p_{i}\right)\right\rceil$

Theorem 3.16: Every r-ary Shannon-Fano code C for a source S satisfies

$$
H_{r}(\mathcal{S}) \leq L(\mathcal{C}) \leq 1+H_{r}(\mathcal{S})
$$

- Example 3.18
- Let S have 5 symbols, with probabilities $p_{i}=0.3,0.2,0.2$, $0.2,0.1$ as in Example 2.5
- Compute Shannon-Fano code word length $l_{i}, L(C), \eta$.
- Compare with Huffman code.

Compute word length l_{i} of Shannon-Fano Code
$l_{i}=\left\lceil\log _{2}\left(1 / p_{i}\right)\right\rceil=\min \left\{n \in \mathbf{Z} \mid 2^{n} \geq 1 / p_{i}\right\}$
$\left\lceil\lg 1 / p_{i}\right\rceil=l_{i} \rightarrow \lg 1 / p_{i} \leq l_{i} \rightarrow \frac{1}{1 / p_{i}} \leq 2^{l_{i}}$

- Example 3.18
- Let S have 5 symbols, with probabilities $p_{i}=0.3,0.2,0.2$, $0.2,0.1$ as in Example 2.5
- Compute Shannon-Fano code word length $l_{i}, L(C), \eta$.
- Compare with Huffman code.

p_{i}	3	2	2	2	1
λ_{i}	2	3	3	3	4

- Example 3.19
- If $p_{1}=1$ and $p_{i}=0$ for all $i>1$, then $H_{r}(S)=0$. An r-ary optimal code D for S has average word-length $L(D)=$ 1 , so here the upper bound $1+H_{r}(S)$ is attained.

Theorem 3.16: Every r-ary Shannon-Fano code C for a source S satisfies

$$
H_{r}(\mathcal{S}) \leq L(\mathcal{C}) \leq 1+H_{r}(\mathcal{S})
$$

3.5 Entropy of Extensions and Products

- Recall from §2.6
- S^{n} has q^{n} symbols $s_{i_{1}} \ldots s_{i_{n}}$ with probabilities $p_{i_{1}} \ldots p_{i_{n}}$.
- Theorem 3.20
- If S is any source then $H_{r}\left(S^{n}\right)=n H_{r}(S)$.
- Lemma 3.21
- If S and T are independent sources then $H_{r}(S \times T)=$ $H_{r}(S)+H_{r}(T)$
- Corollary 3.22
- If S_{1}, \ldots, S_{n} are independent sources then

$$
H_{r}\left(\mathcal{S}_{1} \times \cdots \times \mathcal{S}_{n}\right)=H_{r}\left(\mathcal{S}_{1}\right)+\cdots+H_{r}\left(\mathcal{S}_{n}\right)
$$

- Lemma 3.21
- If S and T are independent sources then $H_{r}(S \times T)=$ $H_{r}(S)+H_{r}(T)$

Proof

Independence gives $\operatorname{Pr}\left(s_{i} t_{j}\right)=p_{i} q_{j}$, so

$$
\begin{aligned}
H_{r}(\mathcal{S} \times \mathcal{T}) & =-\sum_{i} \sum_{j} p_{i} q_{j} \log _{r} p_{i} q_{j} \\
& =-\sum_{i} \sum_{j} p_{i} q_{j}\left(\log _{r} p_{i}+\log _{r} q_{j}\right) \\
& =-\sum_{i} \sum_{j} p_{i} q_{j} \log _{r} p_{i}-\sum_{i} \sum_{j} p_{i} q_{j} \log _{r} q_{j} \\
& =\left(-\sum_{i} p_{i} \log _{r} p_{i}\right)\left(\sum_{j} q_{j}\right)+\left(\sum_{i} p_{i}\right)\left(-\sum_{j} q_{j} \log _{r} q_{j}\right) \\
& =H_{r}(\mathcal{S})+H_{r}(\mathcal{T})
\end{aligned}
$$

since $\sum p_{i}=\sum q_{j}=1$.

3.6 Shannon's First Theorem

- Theorem 3.23
- By encoding S^{n} with n sufficiently large, one can find uniquely decodable r-ary encodings of a source S with average word-lengths arbitrarily close to the entropy $H_{r}(S)$.
- Recall that
- if a code for S^{n} has average word-length L_{n}, then as an encoding of S it has average word-length L_{n} / n.
- Note that
- the encoding process of S^{n} for a large n are complicated and time-consuming.
- the decoding process involves delays

Proof of Shannon's First Theorem

- Theorem 3.23
- By encoding S^{n} with n sufficiently large, one can find uniquely decodable r-ary encodings of a source S with average word-lengths arbitrarily close to the entropy $H_{r}(S)$.

Proof: By Corollary 3.17, $\quad H_{r}\left(\mathcal{S}^{n}\right) \leq L_{n} \leq 1+H_{r}\left(\mathcal{S}^{n}\right)$,
Theorem 3.20 gives $n H_{r}(\mathcal{S}) \leq L_{n} \leq 1+n H_{r}(\mathcal{S})$.
Dividing by n we get $H_{r}(\mathcal{S}) \leq \frac{L_{n}}{n} \leq \frac{1}{n}+H_{r}(\mathcal{S})$,
So

$$
\lim _{n \rightarrow \infty} \frac{L_{n}}{n}=H_{r}(\mathcal{S})
$$

3.7 An Example of Shannon's First Theorem

Let S be a source with two symbols s_{1}, s_{2} of probabilities $p_{i}=2 / 3,1 / 3$, as in Example 3.2.

- In §3.1, we have $H_{2}(\mathcal{S})=\log _{2} 3-\frac{2}{3} \approx 0.918$
- In §2.6, using binary Huffman codes for S^{n} with $n=1,2$ and 3, we have $\quad L_{n} / n \approx 1,0.944$ and 0.938
- For larger n it is simpler to use Shannon-Fano codes, rather than Huffman codes.
- Compute L_{n} for S^{n}

$$
L_{n}=a_{n}-\frac{2 n}{3} \quad a_{n}=\left\lceil n \log _{2} 3\right\rceil
$$

- Verify $L_{n} / n \rightarrow H_{2}(S)$

Verify $L_{n} / n \rightarrow H_{2}(S) \quad H_{2}(\mathcal{S})=\log _{2} 3-\frac{2}{3} \approx 0.918$

$$
\begin{aligned}
& \begin{array}{l}
L_{n}=a_{n}-\frac{2 n}{3} \quad a_{n}=\left\lceil n \log _{2} 3\right\rceil \\
\hline \frac{L_{n}}{n}=\frac{a_{n}}{n}-\frac{2}{3}=\frac{\left\lceil n \log _{2} 3\right\rceil}{n}-\frac{2}{3} . \\
\\
n \log _{2} 3 \leq\left\lceil n \log _{2} 3\right\rceil<1+n \log _{2} 3, \\
\\
\log _{2} 3 \leq \frac{\left\lceil n \log _{2} 3\right\rceil}{n}<\frac{1}{n}+\log _{2} 3, \\
\frac{\left\lceil n \log _{2} 3\right\rceil}{n} \rightarrow \log _{2} 3 \\
\end{array} \quad L_{n} / n \rightarrow H_{2}(S) \\
&
\end{aligned}
$$

Compute L_{n} for $S^{n--}(1) \quad L_{n}=a_{n}-\frac{2 n}{3} \quad a_{n}=\left\lceil n \log _{2} 3\right\rceil$
S has two symbols s_{1}, s_{2} of probabilities $p_{i}=2 / 3,1 / 3$
S^{n} has 2^{n} symbols, each consisting of a block of n symbols s_{1} or s_{2}
Assume $s \in S^{n}$ with k symbols s_{1} and ($\left.n-k\right)$ symbols s_{2}

Then s has probability

$$
\operatorname{Pr}(\mathbf{s})=\left(\frac{2}{3}\right)^{k}\left(\frac{1}{3}\right)^{n-k}=\frac{2^{k}}{3^{n}}
$$

The symbol s has a Shannon-Fano code-word of length

$$
l_{k}=\left\lceil\log _{2}\left(\frac{1}{\operatorname{Pr}(\mathbf{s})}\right)\right\rceil=\left\lceil\log _{2}\left(\frac{3^{n}}{2^{k}}\right)\right\rceil=\left\lceil n \log _{2} 3-k\right\rceil=a_{n}-k
$$

Compute L_{n} for S^{n}-- (2)

$$
L_{n}=a_{n}-\frac{2 n}{3}
$$

For each $\mathrm{k}=0,1, \ldots, \mathrm{n}$, the number of such symbols s is $C(k, n)$
Hence the average word-length (for encoding S^{n}) is

$$
\begin{aligned}
L_{n} & =\sum_{k=0}^{n}\binom{n}{k} \operatorname{Pr}(\mathbf{s}) l_{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} \frac{2^{k}}{3^{n}}\left(a_{n}-k\right) \\
& =\frac{1}{3^{n}}\left(a_{n} \sum_{k=0}^{n}\binom{n}{k} 2^{k}-\sum_{k=0}^{n} k\binom{n}{k} 2^{k}\right)
\end{aligned}
$$

(3.9)

By the Binomial Theorem

$$
\begin{gathered}
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \\
\downarrow \mathrm{X}=2 \\
\sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n} .
\end{gathered}
$$

Compute L_{n} for S^{n}-- (3) $L_{n}=a_{n}-\frac{2 n}{3} \quad a_{n}=\left\lceil n \log _{2} 3\right\rceil$

Differentiating (3.10) and then multiplying by x, we have

$$
\begin{array}{ll}
n x(1+x)^{n-1}=\sum_{k=1}^{n} k\binom{n}{k} x^{k}=\sum_{k=0}^{n} k\binom{n}{k} x^{k}, \\
\sum_{k=0}^{n} k\binom{n}{k} 2^{k}=2 n .3^{n-1} . & (1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \\
\text { Substituting in (3.9), we have } & \tag{3.10}\\
L_{n}=\frac{1}{3^{n}}\left(a_{n} 3^{n}-2 n .3^{n-1}\right)=a_{n}-\frac{2 n}{3} & \sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n}
\end{array}
$$

