Coding and Information Theory
Chapter 3
Entropy (C)

Xuejun Liang

This is the third lecture of chapter 3



Chapter 3: Entropy
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3.4 Shannon-Fane Coding

3.5 Entropy of Extensions and Products

3.6 Shannon's First Theorem

3.7 An Example of Shannon's First Theorem



Quick Review of Last Lecture

Theorem 3.11: If C is any uniquely decodable r-ary code for a source S,
then L(C) = H,.(S).

Corollary 3.12: L(C) = H,.(S) if and only if log,-(p;) is an integer for
each i, thatis, each p; = r® for some integere; < 0

H,(S)

Efficiency

= L(C) Redundancy | n=1—n.

A Shannon-Fano code C for S has word lengths li = [logr(l/pi)]

Theorem 3.16: Every r-ary Shannon-Fano code C for a source S satisfies

Hy(S) < L(C) < 1+ H,(S)




* Example 3.18
* Let S have 5 symbols, with probabilities p;= 0.3, 0.2, 0.2,
0.2,0.1 as in Example 2.5
* Compute Shannon-Fano code word length [;, L(C), n.
 Compare with Huffman code.

Compute word length [; of Shannon-Fano Code

[lg 1/1%'] =l DlgYp, <l D Vp, <2k




* Example 3.18
* Let S have 5 symbols, with probabilities p;= 0.3, 0.2, 0.2,
0.2,0.1 as in Example 2.5
* Compute Shannon-Fano code word length [;, L(C), n.
 Compare with Huffman code.
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 Example 3.19

* Ifpy=1land p; =0foralli>1,then H.(S) = 0. An r-ary
optimal code D for S has average word-length L(D) =
1, so here the upper bound 1 + H,.(S) is attained.

Theorem 3.16: Every r-ary Shannon-Fano code C for a source S satisfies




3.5 Entropy of Extensions and Products

* Recall from §2.6
* §" has q" symbols s; ...s; with probabilities p; ...p; .
* Theorem 3.20
* If S is any source then H,.(§™) = nH,(S).

* Lemma 3.21
* If Sand T are independent sources then H,.(S X T) =
H,(S) + H,(T)
e Corollary 3.22
e If §4,..., S, are independent sources then
H(Sy % -+ X 8n) = Ho(S1) + -+ + Hy(Sp)



* lemma 3.21

* If Sand T are independent sources then H,.(S X T) =
H,(S) + H,(T)

Proof
Independence gives Pr(s;t;) = pig;, so

H.(SxT)=- 5_: ZPin log, pig;
= - Z ZthJ (logr pi + log, QJ)
- - Z Z pig; log, pi — Z Z pig; 10g, g;

- (- Zpi log, Pi) (Z qj) (Zpi) (— Z g; log, Qj)
= H(S) + H:(T)
since ) p; =) ¢j=1.



3.6 Shannon's First Theorem

e Theorem 3.23

* By encoding S™ with n sufficiently large, one can find
uniquely decodable r-ary encodings of a source S with
average word-lengths arbitrarily close to the entropy
H,(S).

e Recall that

e if a code for S™ has average word-length L,,, then as an
encoding of S it has average word-length L., /n.

 Note that

 the encoding process of S™ for a large n are complicated
and time-consuming.

* the decoding process involves delays



Proof of Shannon's First Theorem

* Theorem 3.23
* By encoding S™ with n sufficiently large, one can find
uniquely decodable r-ary encodings of a source S with
average word-lengths arbitrarily close to the entropy

H.(S).

Proof: By Corollary 3.17, H,.(S")<L,<1+ H.(8"),
Theorem 3.20 gives nH,.(S) <L, <1+ nH,.(S)
Dividing by n we get H,(S) < £’l < 1 + H.(S),

n " n
So lim & — r(S)



3.7 An Example of Shannon's First Theorem

Let S be a source with two symbols s4, s, of probabilities

p; =2/3,1/3, asin Example 3.2.

* In §3.1, we have | H,(S) =log,3 — % ~ 0.918

* In §2.6, using binary Huffman codes for S" withn =1, 2
and 3, we have |L,/n a1, 0.944 and 0.938

* For larger n it is simpler to use Shannon-Fano codes,
rather than Huffman codes.

e Compute L,, for S™

L,=a, —— a, = [nlog,3]

* Verify L,,/n = H,(S)



Verify L,,/n = H,(S) H,(S) =log, 3 — 2 ~ 0.918

_ Z_n a, = [nlog, 3]

L, a, 2 [nlogy3] 2|
n n 3 n 3

nlog, 3 < [nlog, 3] < 1+ nlog, 3,

L H, (S
3 [nlog, 3] o Tl/n — 2( )
n

log, < - + log, 3,

[n1og; 3] _, 1og, 3

n _—




Compute Ly, for S™-- (1) | [ = o -2 | [ % = [nlogs3]

S has two symbols sy, s, of probabilitiesp; = 2/3,1/3

S™ has 2™ symbols, each consisting of a block of n symbols s; or s,

Assume s € S™ with k symbols s, and (n-k) symbols s,

Pr (s) 2\k s1\n—k 2k
Then s has probability r(s) = (-—) (-) = —.
3 3 3n

The symbol s has a Shannon-Fano code-word of length

= o () = o (3] = o1 =




Compute L, for S™ -- (2) L =a, _2n || a, = [nlog,3]

3

Foreachk=0, 1, ..., n, the number of such symbols s is C(k,n)

Hence the average word-length (for encoding S™) is

e n . .
= By the Binomial Theorem
L, kéo ( k) Pr(s) I y ! !
= n Zk n & n k
,;—0: (k) 3n (an k) ( + x) kizo (k)fﬂ

F=E@ 20 e
; (:)2" =3

(3.9) k=0



Compute L, for S™ -- (3) L =a, _2n || a, = [nlog,3]

3

Differentiating (3.10) and then multiplying by x, we have

nz(l+ )"~ g:lk( )zkzgk(:)xk

l X=2 By the Binomial Theorem

n n

Ek(”)zk =2n.3""1. (1+2)" Z( ) ¢ (310)
k k=0

k=0

Substituting in (3.9), we have zn: ( ) k

1
L, = —3—5(%3“ ~2n3"" ) =ap, — —
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