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Chapter 3: Entropy

3.1 Information and Entropy

3.2 Properties of the Entropy Function

3.3 Entropy and Average Word-length

3.4 Shannon-Fane Coding

3.5 Entropy of Extensions and Products

3.6 Shannon's First Theorem

3.7 An Example of Shannon's First Theorem



Quick Review of Last Lecture

Theorem 3.7: 𝐻𝑟(𝑆) ≥ 0, with equality if and only if 
𝑝𝑖 = 1 for some 𝑖 (so that 𝑝𝑗 = 0 for all 𝑗 ≠ 𝑖).

Theorem 3.10: If a source 𝑆 has 𝑞 symbols 
then 𝐻𝑟(𝑆) ≤ 𝑙𝑜𝑔𝑟𝑞, with equality if and 
only if the symbols are equiprobable.



3.3 Entropy and Average Word-length

• Theorem 3.11
• If 𝐶 is any uniquely decodable 𝑟-ary code for a source 𝑆, 

then 𝐿(𝐶) ≥ 𝐻𝑟(𝑆).

• The interpretation
• Each symbol emitted by 𝑆 carries 𝐻𝑟(𝑆) units of 

information, on average.

• Each code-symbol conveys one unit of information, so 
on average each code-word of 𝐶 must contain at least 
𝐻𝑟(𝑆) code-symbols, that is, 𝐿(𝐶) ≥ 𝐻𝑟(𝑆).

• In particular, sources emitting more information require 
longer code-words.



Proof of Theorem 3.11



Corollary 3.12
Given a source 𝑆 with probabilities 𝑝𝑖, there is a uniquely 
decodable 𝑟-ary code 𝐶 for 𝑆 with 𝐿 𝐶 = 𝐻𝑟(𝑆) if and 
only if 𝑙𝑜𝑔𝑟(𝑝𝑖) is an integer for each 𝑖 , that is, each 𝑝𝑖 =
𝑟𝑒𝑖 for some integer 𝑒𝑖 ≤ 0.



Corollary 3.12
Given a source 𝑆 with probabilities 𝑝𝑖, there is a uniquely 
decodable 𝑟-ary code 𝐶 for 𝑆 with 𝐿 𝐶 = 𝐻𝑟(𝑆) if and 
only if 𝑙𝑜𝑔𝑟(𝑝𝑖) is an integer for each 𝑖 , that is, each 𝑝𝑖 =
𝑟𝑒𝑖 for some integer 𝑒𝑖 ≤ 0.



Example 3.13
If 𝑆 has 𝑞 = 3 symbols 𝑠𝑖, with probabilities 𝑝𝑖 = 1⁄4, 1⁄2, 
and 1⁄4 (see Examples 1.2 and 2.1). 

𝐻2 𝑆 =

A binary Huffman code 𝐶 for 𝑆:

𝐿 𝐶 =



• Example 3.14

• Let 𝑆 have 𝑞 = 5 symbols, with probabilities 𝑝𝑖 =
0.3, 0.2, 0.2, 0.2, 0.1, as in Example 2.5.

• In Example 3.3, 𝐻2(𝑆) = 2.246, and 

• in Example 2.5, 𝐿 𝐶 = 2.3, 𝐶 binary Huffman code for 𝑆

• By Theorem 2.8, every uniquely decodable binary code 
𝐷 for 𝑆 satisfies 𝐿 𝐷 ≥ 2.3 > 𝐻2(𝑆).

• Thus no such uniquely decodable binary code 𝐷 satisfies

𝐿 𝐷 = 𝐻𝑟(𝑆)

• What is the reason?



• Example 3.15

• Let 𝑆 have 3 symbols 𝑠𝑖, with probabilities 𝑝𝑖 =
1

2
, 
1

2
, 0.

• Let 𝑆 have 2 symbols 𝑠𝑖, with probabilities 𝑝𝑖 =
1

2
, 
1

2
.



Code Efficiency and Redundancy

• If 𝐶 is an 𝑟-ary code for a source 𝑆, its efficiency is 
defined to be

• So 0 ≤ 𝜂 ≤ 1 for every uniquely decodable code 𝐶 for 𝑆

• The redundancy of 𝐶 is defined to be ҧ𝜂 = 1 − 𝜂.
• Thus increasing redundancy reduces efficiency

• In Examples 3.13 and 3.14, 
• 𝜂 = 1 and 𝜂 ≈ 0.977, respectively.



3.4 Shannon-Fano Coding
• Shannon-Fano codes 

• close to optimal, but easier to estimate their average 
word lengths.

• A Shannon-Fano code 𝐶 for 𝑆 has word lengths

• So, we have 
So Theorem 1.20 (Kraft's 
inequality) implies that 
there is an instantaneous 
𝑟-ary code 𝐶 for 𝑆 with 
these word-lengths 𝑙𝑖



• Theorem 3.16
• Every 𝑟-ary Shannon-Fano code 𝐶 for a source 𝑆 satisfies

• Corollary 3.17
• Every optimal 𝑟-ary code 𝐷 for a source 𝑆 satisfies



• Example 3.18

• Let 𝑆 have 5 symbols, with probabilities 𝑝𝑖= 0.3, 0.2, 0.2, 
0.2, 0.1 as in Example 2.5

• Compute Shannon-Fano code word length 𝑙𝑖, 𝐿(𝐶), 𝜂.

• Compare with Huffman code.

Compute word length 𝑙𝑖 of Shannon-Fano Code
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