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The aim of this chapter

* Introduce the entropy function

* which measures the amount of information emitted by a
source

* Examine the basic properties of this function

* Show how it is related to the average word lengths
of encodings of the source



3.1 Information and Entropy

* Define a number I(s;), for each s; € S, which
represents

 How much information is gained by knowing that S has
emitted s;

* Our prior uncertainty as to whether s; will be emitted
and our surprise on learning that it has been emitted
* Therefore require that:

1) I(s;) is a decreasing function of the probability p; of
Si, with I(Si) = 0if Di = 1;

2) I(s;sj) = I1(s;) +1(s;), where S emits s; and s;
consecutively and independently.



Entropy Function

I=-logp

 We define
1 .
I(s;) = —logp; = log — (3.1) M 1P

Pi Figure 3.1
where p; = Pr(s;). So that I satisfies (1) and (2)

* Example 3.1

* Let S be an unbiased coin, with s; and s, representing
heads and tails. Then I(s;) =? and I(s,) =?



The r-ary Entropy of §

* The average amount of information conveyed by S (per
source-symbol) is given by the function

H (S) Z‘pz 31. sz logr pt - Zpi logr Pi

1=1

* Called the r-ary entropy of S.
* Base r is often omitted

~plogp
H(S) zptlog_ = -—Zleogpi [\
|
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Figure 3.2
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Example 3.2

Let S have g = 2 symbols, with
probabilitiespand 1-p
lLetp =1 —p. Then

H(S) = —plogp —plogp.

H(p) is maximal when p =%

H;(p)

1
3 1
Figure 3.3

H(p) = —plogp — plogp.

Compute H,(p) whenp ="%and p =2/3

p.

p



Example 3.3

* If S has g =5 symbols with probabilities
*p;=0.3,0.2,0.2,0.2,0.1, as in §2.2, Example 2.5,
» we find that H,(S) = 2.246.



Examples (Cont.)

* If S has q equiprobable symbols, then p; = 1/, for

each i, so 1

HT(S) =q- Elogrq = logrq'

* Example 3.4 and 3.5
e letq =5, H,(S) = log,5 = 2.321
o Letq = 6, Hy(S) = log,6 ~ 2.586
* Example 3.6.

* Using the known frequencies of the letters of the
alphabet, the entropy of English text has been
computed as approximately 4.03.



Compare average word-length of
binary Huffman coding with entropy

* Asin Example 3.2 with p = 2/,
+ Hy(S) ~ 0.918
o L(CY) ~ 1, L(C?)/2 ~ 0.944, L(C3)/3 ~ 0.938

* As in Example 3.3
* H,y(S) = 2.246
e L(CYH) = 2.3

* Asin Example 3.4
* H,(S) ~ 2.321
e L(CYH =24



3.2 Properties of the Entropy Function

* Theorem 3.7

* H.(S) = 0, with equality if and only if p; = 1 for some i
(sothatp; = Oforallj # i).



Lemma 3.8 yi

Forallx > Owehavelnx < x —1,
with equality if and only if x = 1.

Converting to some other base r, we have
logr(x) < logy(e) - (x — 1)
with equality ifand only if x = 1




Corollary 3.9
letx; = 0andy; > 0fori=1,...,q,and let
Y x; =2y = 1(so(x;) and (y;) are probability
dlstrlbutlons with yl * O) Then
Z:r, log,. — < X::J:I log,. ,
i=1 i=1
(that is, ),; xilog(yi/xi) < 0), with equality if and only if
= vy; for all i.



Theorem 3.10

If a source S has g symbols then H,.(S) < log,q, with
equality if and only if the symbols are equiprobable.

1 1 J 1
inlogr ;’ < inlogr"y"_‘a
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