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The aim of this chapter

• Introduce the entropy function 
• which measures the amount of information emitted by a 

source

• Examine the basic properties of this function

• Show how it is related to the average word lengths 
of encodings of the source



3.1 Information and Entropy

• Define a number 𝐼(𝑠𝑖), for each 𝑠𝑖 ∈ 𝑆, which 
represents
• How much information is gained by knowing that 𝑆 has 

emitted 𝑠𝑖
• Our prior uncertainty as to whether 𝑠𝑖 will be emitted 

and our surprise on learning that it has been emitted

• Therefore require that:
1) 𝐼(𝑠𝑖) is a decreasing function of the probability 𝑝𝑖 of 

𝑠𝑖, with 𝐼(𝑠𝑖) = 0 if 𝑝𝑖 = 1;

2) 𝐼(𝑠𝑖𝑠𝑗) = 𝐼 𝑠𝑖 + 𝐼(𝑠𝑗), where 𝑆 emits 𝑠𝑖 and 𝑠𝑗
consecutively and independently.



Entropy Function

• We define

where 𝑝𝑖 = Pr 𝑠𝑖 . So that 𝐼 satisfies (1) and (2)

• Example 3.1
• Let 𝑆 be an unbiased coin, with 𝑠1 and 𝑠2 representing 

heads and tails. Then 𝐼 𝑠1 =? and 𝐼 𝑠2 =?



The 𝑟-ary Entropy of 𝑆

• The average amount of information conveyed by 𝑆 (per 
source-symbol) is given by the function

• Called the 𝑟-ary entropy of 𝑆.
• Base 𝑟 is often omitted



Example 3.2

• Let 𝑆 have 𝑞 = 2 symbols, with 
probabilities 𝑝 and 1 - 𝑝

• Let ҧ𝑝 = 1 − 𝑝. Then

• 𝐻(𝑝) is maximal when 𝑝 = ½

• Compute 𝐻2(𝑝) when 𝑝 = ½ and 𝑝 = 2⁄3



Example 3.3

• If 𝑆 has 𝑞 = 5 symbols with probabilities 
• 𝑝𝑖 = 0.3, 0.2, 0.2, 0.2, 0.1, as in §2.2, Example 2.5, 
• we find that 𝐻2 𝑆 = 2.246.



Examples (Cont.)

• If 𝑆 has 𝑞 equiprobable symbols, then 𝑝𝑖 = Τ1 𝑞 for 
each 𝑖, so

• Example 3.4 and 3.5
• Let 𝑞 = 5, 𝐻2 𝑆 = 𝑙𝑜𝑔25 ≈ 2.321

• Let 𝑞 = 6, 𝐻2 𝑆 = 𝑙𝑜𝑔26 ≈ 2.586

• Example 3.6.
• Using the known frequencies of the letters of the 

alphabet, the entropy of English text has been 
computed as approximately 4.03.



Compare average word-length of 
binary Huffman coding with entropy

• As in Example 3.2 with 𝑝 = Τ2 3

• 𝐻2(𝑆) ≈ 0.918

• 𝐿 𝐶1 ≈ 1, 𝐿 𝐶2 /2 ≈ 0.944, 𝐿 𝐶3 /3 ≈ 0.938

• As in Example 3.3
• 𝐻2(𝑆) ≈ 2.246

• 𝐿 𝐶1 ≈ 2.3

• As in Example 3.4
• 𝐻2(𝑆) ≈ 2.321

• 𝐿 𝐶1 ≈ 2.4



3.2 Properties of the Entropy Function

• Theorem 3.7
• 𝐻𝑟(𝑆) ≥ 0, with equality if and only if 𝑝𝑖 = 1 for some 𝑖

(so that 𝑝𝑗 = 0 for all 𝑗 ≠ 𝑖).



Converting to some other base 𝑟, we have
𝑙𝑜𝑔𝑟(𝑥) ≤ 𝑙𝑜𝑔𝑟(𝑒) ∙ 𝑥 − 1

with equality if and only if 𝑥 = 1

Lemma 3.8
For all 𝑥 > 0 we have ln 𝑥 ≤ 𝑥 − 1, 
with equality if and only if 𝑥 = 1.



Corollary 3.9 
Let 𝑥𝑖 ≥ 0 and 𝑦𝑖 > 0 for 𝑖 = 1, ..., q, and let 
σ𝑖 𝑥𝑖 = σ𝑖 𝑦𝑖 = 1 (so (𝑥𝑖) and (𝑦𝑖) are probability 
distributions, with 𝑦𝑖 ≠ 0). Then

(that is, σ𝑖 𝑥𝑖log( Τ𝑦𝑖 𝑥𝑖) ≤ 0), with equality if and only if 
𝑥𝑖 = 𝑦𝑖 for all 𝑖.



Theorem 3.10
If a source 𝑆 has 𝑞 symbols then 𝐻𝑟(𝑆) ≤ 𝑙𝑜𝑔𝑟𝑞, with 
equality if and only if the symbols are equiprobable.
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