Coding and Information Theory Chapter 2 Optimal Codes Xuejun Liang

This is the second lecture of chapter 2

Content of Chapter 2

2.1 Optimality

- 2.2 Binary Huffman Codes
- 2.3 Average Word-length of Huffman Codes
- 2.4 Optimality of Binary Huffman Codes
- 2.5 r-ary Huffman Codes
- 2.6 Extensions of Sources

2.2 Binary Huffman Codes

• Let $T = Z_2 = \{0,1\}$, Given a source S, we renumber the source-symbols s_1, \dots, s_q , so that

 $p_1 \geq p_2 \geq \cdots \geq p_q$.

- Form a reduced source S' by combining the two least-likely symbols.
- Given any binary code C' for S', we can form a binary code C for S:

Example 2.5 $\begin{array}{c} \mathcal{S} \to \mathcal{S}' \to \cdots \to \mathcal{S}^{(q-2)} \to \mathcal{S}^{(q-1)} \\ \mathcal{C} \leftarrow \mathcal{C}' \leftarrow \cdots \leftarrow \mathcal{C}^{(q-2)} \leftarrow \mathcal{C}^{(q-1)}. \end{array}$

 Let S have q = 5 symbols s₁,...,s₅ with probabilities p_i = 0.3, 0.2, 0.2, 0.2, 0.1.
 Compute Huffman code and L(C)

S				0.3	0.2	0.2	0.2	0.1
С				01	10	11	000	001
S'				0.3	-	-		
<i>C'</i>			00	01	10	11		
<i>S''</i>		.4	0.3	0.3				
<i>C''</i>		1	00	01				
<i>S'''</i>	0.6	.4						
<i>C'''</i>	0	1						
S'''' 1.0 C'''' ε								

Example 2.6
$$\begin{array}{c} \mathcal{S} \to \mathcal{S}' \to \cdots \to \mathcal{S}^{(q-2)} \to \mathcal{S}^{(q-1)} \\ \mathcal{C} \leftarrow \mathcal{C}' \leftarrow \cdots \leftarrow \mathcal{C}^{(q-2)} \leftarrow \mathcal{C}^{(q-1)} \end{array}$$

• Let S have q = 5 symbols $s_1, ..., s_5$ again, but now suppose that they are equiprobable, that is,

 $p_1 = ... = p_5 = 0.2.$

Compute Huffman code and L(C).

How the probability distribution affects the average word-length of Huffman codes

- In general, the greater the variation among the probabilities p_i , the lower the average word-length of an optimal code.
- Note: entropy can be used to measure the amount of variation in a probability distribution.
 - Will study later in next chapter.

2.3 Average Word-length of Huffman Codes

$$L(C) - L(C') = p_{q-1}(l+1) + p_q(l+1) - (p_{q-1} + p_q)l$$

= $p_{q-1} + p_q$
= p' , (2.3)

- Note p' is the "new" probability created by reducing S to S'.
- If we iterate this, using the fact that $L(C^{(q-1)}) = |\varepsilon| = 0$, we find that

$$L(C) = p' + p'' + \dots + p^{(q-1)}$$
(2.4)

• the sum of all the new probabilities $p', p'', \dots, p^{(q-1)}$ created in reducing S to $S^{(q-1)}$.

Try Example 2.5 and Example 2.6

 S
 0.2
 0.2
 0.2
 0.2
 0.2

 S'
 0.4
 0.2
 0.2
 0.2

 S''
 0.4
 0.4
 0.2

 S'''
 0.6
 0.4

 S''''
 1.0

2.6

2.4 Optimality of Binary Huffman Codes

- Definition
 - Two binary words w_1 and w_2 to be siblings if they have the form x0, x1 (or vice versa) for some word $x \in T^*$.
- Lemma 2.7
 - Every source S has an optimal binary code D in which two of the longest code-words are siblings.
 - **Proof:** By Theorem 2.3, there is an optimal binary code for S

Let us choose such a code D which has the minimal total word length $\sigma(D)$

Choose a longest code-word w in D

Assume w = x0, then x1 \in D. So D has two longest sibling code-words

If $x1 \notin D$. Let $D' = (D - \{x0\}) \cup \{x\}$.

Then D' is a prefix code and $\sigma(D') < \sigma(D)$. This is a contradiction!

Theorem 2.8: If *C* is a binary Huffman code for a source *S*, then *C* is an optimal code for *S*.

• **Proof:** Lemma 2.4 shows that C is instantaneous, so it is sufficient to show that L(C) is minimal

We use induction on the number q of source-symbols.

If q = I then $C = \{\epsilon\}$ with L(C) = 0, so the result is trivially true.

Assume that L(C) is minimal for all sources with q - 1 symbols

Prove that L(C) is minimal for all sources with q symbols

Let S = {
$$s_1, s_2, \dots, s_{q-2}, s_{q-1}, s_q$$
 } and S' = { $s_1, s_2, \dots, s_{q-2}, s'$ }, $s' = s_{q-1}Vs_q$

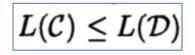
Now let D: $s_i \rightarrow x_i$ be the optimal binary code for S given by Lemma 2.7

D has a sibling pair of longest code-words: $x_{q-1} = x0$ and $x_q = x1$

Now form a code D' for S': $s_i \rightarrow x_i$ (i<q-1) and s' \rightarrow x

 $L(\mathcal{D}) - L(\mathcal{D}') = p_{q-1} + p_q = L(\mathcal{C}) - L(\mathcal{C}'), \quad L(\mathcal{D}') - L(\mathcal{C}') = L(\mathcal{D}) - L(\mathcal{C})$

Now C' is a Huffman code for S', a source with q-1 symbols, so by the induction hypothesis C' is optimal



2.5 *r*-*ary* Huffman Codes

- If we use an alphabet T with |T| = r > 2, then the construction of r-ary Huffman codes is similar to that in the binary case.
 - Merge *r* source symbols together at a time
 - Note: may need to add some dummy symbols such that

 $q \equiv 1 \bmod (r-1)$

Let q = 6 and r = 3. Since r - 1 = 2 we need $q \equiv 1 \mod (2)$, so we adjoin an extra symbol s_7 to S, with $p_7 = 0$ The reduction process now gives

Let q = 6 and r = 3 and suppose that the symbols $s_1, ..., s_6$, of S have probabilities $p_i = 0.3, 0.2, 0.2, 0.1, 0.1, 0.1$. After adjoining s_7 with $p_7 = 0$, we find that the reduction process is as follows:

Let q = 6 and r = 3 and suppose that the symbols $s_1, ..., s_6$, of S have probabilities $p_i = 0.3, 0.2, 0.2, 0.1, 0.1, 0.1$. After adjoining s_7 with $p_7 = 0$, we find that the reduction process is as follows:

> $p_i = 0.3, 0.2, 0.2, 0.1, 0.1, 0.1, 0.0$ C = {1, 00, 01, 02, 20, 21, 22}

2.6 Extensions of Sources

- Let S be a source with
 - q symbols s_1, \ldots, s_q of
 - probabilities p_1, \ldots, p_q
- The n-th extension S^n of S is the source with
 - q^n symbols $s_{i_1} \dots , s_{i_n} (s_{i_j} \in S)$
 - probabilities $p_{i_1} \dots$, p_{i_n}
- Note: The probabilities $p_{i_i}\ldots$, p_{i_n} form a probability distribution by
 - Expanding the left-hand side of the equation

$$(p_1+\cdots+p_q)^n=1^n=1$$

Let *S* have source $S = \{s_1, s_2\}$ with $p_1 = 2/3$, $p_2 = 1/3$. Then S^2 has source alphabet $= \{s_1s_1, s_1s_2, s_2s_1, s_2s_2\}$ with probabilities 4/9, 2/9, 2/9, 1/9. **Example 2.12**: *S* is as in Example 2.11

A binary Huffman code C: $s_1 \mapsto 0, s_2 \mapsto 1$ Average word-length L(C) = 1Construct a Huffman code C^2 for S^2 Average word-length $L(C^2) = ?$ You will see $L(C^2)/2 < L(C) = 1$

Extensions of Sources: decoding

- Decode a pair (two consecutive symbols), rather than one symbol, at a time.
 - Not quite instantaneous
 - A bounded delay while waiting for pairs to be completed
- Can construct a Huffman code C^3 for S^3
 - Can show $L(C^3)/3 < L(C^2)/2$
- Continuing this principle, construct a Huffman code C^n for S^n
 - the average word-length $L(C^n)/n \rightarrow ?$ as $n \rightarrow \infty$