Coding and Information Theory
Chapter 2
Optimal Codes
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2.2 Binary Huffman Codes

e letT =7, ={0,1}, Given a
source S, we renumber the
source-symbols s, ..., Sq, SO
that

Pp2p22-2pg.

* Form a reduced source S’ by
combining the two least-likely
symbols.

* Given any binary code C' for
S’, we can form a binary code
C for S:
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Example 2.5

S8 = =82, g1

C+C (a2 L cla-1),

* Let S have g = 5 symbols s4,...,55 with probabilities
p; = 0.3,0.2,0.2,0.2,0.1.
Compute Huffman code and L(C)
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S8 = =82, g1

C+C (a2 L cla-1),

Example 2.6

* Let S have g = 5 symbols s4,...,55 again, but now suppose
that they are equiprobable, that is,

p1 =..=pg = 0.2.
Compute Huffman code and L(C).



How the probability distribution affects the
average word-length of Huffman codes

* In general, the greater the variation among the probabilities
p;, the lower the average word-length of an optimal code.

* Note: entropy can be used to measure the amount of
variation in a probability distribution.

* Will study later in next chapter.



2.3 Average Word-length of Huffman Codes

L(C) = L(C") = pg—1(l + 1) + pg(l + 1) = (pg—1 + pg)!
= Pg-1 + Pq
=p, (2.3)
* Note p’is the "new" probability created by reducing Sto S’.

* |f we iterate this, using the fact that L(C(q‘l)) = |le| =0,
we find that

LIO)=p +p" +--+pl@D (2.4

* the sum of all the new probabilities p’, p"’, ..., p@=b
created in reducing S to S(4~ 1),



Try Example 2.5 and Example 2.6

S 03 02 02 0.2 0.1
% 0.3 0.3 0.2 0.2
2.5 g 04 0.3 0.3
S 0.6 0.4
S 1.0
S 02 02 02 02 02
% 04 0.2 02 0.2
2.6 ;
S 0.4 0.4 0.2
S 0.6 0.4

S""1.0



2.4 Optimality of Binary Huffman Codes

* Definition
* Two binary words w; and w,, to be siblings if they have
the form x0, x1 (or vice versa) for some word x € T".
* Lemma 2.7
* Every source S has an optimal binary code D in which
two of the longest code-words are siblings.

* Proof: | By Theorem 2.3, there is an optimal binary code for S

Let us choose such a code D which has the minimal total word length (D)

Choose a longest code-word w in D

Assume w = x0, then x1 €D. So D has two longest sibling code-words

If x1 ¢ D. Let D’ = (D — {x0}) U {x}.

Then D’ is a prefix code and o(D’) < o(D). This is a contradiction!




Theorem 2.8: If C is a binary Huffman code for a source S,
then C is an optimal code for S.

e Proof: | Lemma 2.4 shows that Cis instantaneous,
so it is sufficient to show that L(C) is minimal

We use induction on the number q of source-symbols.

If g =1then C={e} with L(C) =0, so the result is trivially true.

Assume that L(C) is minimal for all sources with g - 1 symbols

Prove that L(C) is minimal for all sources with g symbols

! 1 __
LetS={s1,52,...,5¢-2,S¢q-1,Sq }and " ={ 51,83, ...,54-2,5 }, s' = s4_1Vsq

Now let D: s; — x; be the optimal binary code for S given by Lemma 2.7

D has a sibling pair of longest code-words: x,_; = x0 and x; = x1

Now form a code D' for S’: s; = x; (i<g-1) and s’'— x
L(D) - L(D') = py1 +pg = L(C) - L(C')| | L(D') - L(C") = L(D) - L(C)

Now C'is a Huffman code for S', a source with g-1
symbols, so by the induction hypothesis C' is optimal

L(C) < L(D)




2.5 r-ary Hutfman Codes

* If we use an alphabet T with |T| = r > 2, then the
construction of r-ary Huffman codes is similar to
that in the binary case.

* Merge r source symbols together at a time

* Note: may need to add some dummy symbols such that
q=1mod(r—1)



Example 2.9

Let g =6and r =3.Sincer-1=2we need q = 1mod (2),
so we adjoin an extra symbol s; to S, withp; =0

The reduction process now gives ......



Example 2.10
Let ¢ = 6 and r = 3 and suppose that the symbols s, ..., S¢,

of S have probabilities p; =0.3,0.2,0.2, 0.1, 0.1, 0.1.
After adjoining s, with p; = 0, we find that the reduction

process is as follows:



Example 2.10
Let ¢ = 6 and r = 3 and suppose that the symbols s, ..., S¢,

of S have probabilities p; =0.3,0.2,0.2, 0.1, 0.1, 0.1.
After adjoining s, with p; = 0, we find that the reduction

process is as follows:

p; =0.3,0.2,0.2,0.1,0.1,0.1, 0.0
C={1, 00, 01, 02, 20, 21, 22}



2.6 Extensions of Sources

* Let S be a source with
* g symbols s4, s Sq of
* probabilities p4, ..., pg
* The n-th extension S™ of S is the source with
* q" symbolss; ...,s; (si; €S)
* probabilities p;, ..., p;
* Note: The probabilities p;. ..., p; form a probability

distribution by
* Expanding the left-hand side of the equation

(pr+--+p)"=1"=1



Example 2.11
Let S have source S = {s{, s,} withp, =2/3, p, =1/3.
Then S? has source alphabet ={s;51, S{S3, 5251, 5253}
with probabilities 4/9,2/9,2/9,1/9.



Example 2.12: S is as in Example 2.11
A binary Huffman code C: 81 — 0, 89 — 1
Average word-length L(C) = 1
Construct a Huffman code C? for S*
Average word-length L(C?) =7
You will see L(C?)/2 < L(C) =1



Extensions of Sources: decoding

* Decode a pair (two consecutive symbols), rather
than one symbol, at a time.

* Not quite instantaneous
* A bounded delay while waiting for pairs to be completed

 Can construct a Huffman code C3 for §3
e Canshow L(C3)/3 <L(C?)/2
e Continuing this principle, construct a Huffman code
C" for S™

* the average word-length L(C™)/n —»? asn » o
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