Coding and Information Theory Chapter 2 Optimal Codes

Xuejun Liang

The First Lecture of Chapter 2

Content of Chapter 2

- 2.1 Optimality
- 2.2 Binary Huffman Codes
- 2.3 Average Word-length of Huffman Codes
- 2.4 Optimality of Binary Huffman Codes
- 2.5 r-ary Huffman Codes
- 2.6 Extensions of Sources

2.1 Optimality

Let S be a source and assume that the probabilities

where
$$p_i = \Pr(X_n = s_i) = \Pr(s_i)$$
 $0 \le p_i \le 1, \qquad \sum_{i=1}^q p_i = 1.$

• Assume code C for S has word-lengths $l_1, l_2, \dots l_q$. Then the Average Word-Length is defined as

$$L = L(\mathcal{C}) = \sum_{i=1}^q p_i l_i.$$

- Given r and the probability distribution (p_i) , we try to find instantaneous r-ary codes C minimizing L(C).
 - Such codes are called optimal or compact codes

Example 2.1

- Let S be the daily weather (as in Example 1.2)
- with $p_i = \frac{1}{4}, \frac{1}{2}, \frac{1}{4}$ for i = 1, 2, 3.
- Consider two instantaneous codes
- binary code $C: s_1 \mapsto 00, s_2 \mapsto 01, s_3 \mapsto 1$
- L(C) =
- binary code $\mathcal{D}: s_1 \mapsto 00, s_2 \mapsto 1, s_3 \mapsto 01$
- L(D) =

Example 2.1

- Let S be the daily weather (as in Example 1.2)
- with $p_i = \frac{1}{4}, \frac{1}{2}, \frac{1}{4}$ for i = 1, 2, 3.
- Consider two instantaneous codes

• binary code
$$C: s_1 \mapsto 00, s_2 \mapsto 01, s_3 \mapsto 1$$

• $L(C) = \frac{1}{4} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1.7$

• binary code $\mathcal{D}: s_1 \mapsto 00, s_2 \mapsto 1, s_3 \mapsto 01$

•
$$L(D) = \frac{1}{4} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$$

Lemma and Definition

• Lemma 2.2

- Given a source S and an integer r, the set of all average word-lengths L(C) of uniquely decodable r-ary codes C for S is equal to the set of all average word-lengths L(C) of instantaneous r-ary codes C for S.
- Can be proved directly from Corollary 1.22

Definition

• An instantaneous r-ary code C is defined to be optimal if $L(C) = L_{min}(S)$, which is the greatest lower bound of average word-lengths.

Theorem 2.3: Each source S has an optimal r-ary code for each integer $r \ge 2$.

• Proof: There exists C such that $L(C) = L_{min}(S)$

source-symbols: s_1 , ..., s_q

Probability distribution: p_1 , ..., p_q

Assume $\exists k \text{ such that } p_i > 0 \text{ for } i \leq k \text{, and } p_i = 0 \text{ for } i > k$

Let
$$p = \min(p_1, \dots, p_k)$$

1. There exists an instantaneous *r-ary* code *C* for *S*

put $l_1 = \cdots = l_q = l$ for some l such that $r^l \geq q$, and apply Theorem 1.20.

2. $\{L(D) : L(D) \le L(C) \text{ and D is instantaneous } r\text{-}ary \text{ code for } S \}$ is finite

The word-lengths l_1, \ldots, l_k of D must satisfy $l_i \leq \frac{L(\mathcal{C})}{p}$ for $i=1,\ldots,k,$

Otherwise
$$L(\mathcal{D}) = p_1 l_1 + \cdots + p_q l_q \ge p_i l_i > p \frac{L(\mathcal{C})}{p} = L(\mathcal{C})$$
.

So there are only finitely many choices for the code-words w_1,\dots,w_k in ${\it D}$

Theorem 2.3: Each source S has an optimal r-ary code for each integer $r \ge 2$.

• Proof: There exists C such that $L(C) = L_{min}(S)$

source-symbols: s_1 , ..., s_q

Probability distribution: p_1 , ..., p_q

Assume $\exists k \text{ such that } p_i > 0 \text{ for } i \leq k \text{, and } p_i = 0 \text{ for } i > k$

Let
$$p = \min(p_1, \dots, p_k)$$

1. There exists an instantaneous *r-ary* code *C* for *S*

put $l_1 = \cdots = l_q = l$ for some l such that $r^l \geq q$, and apply Theorem 1.20.

2. $\{L(D) : L(D) \le L(C) \text{ and D is instantaneous } r\text{-}ary \text{ code for } S \}$ is finite

The word-lengths l_1, \ldots, l_k of D must satisfy $l_i \leq \frac{L(\mathcal{C})}{p}$ for $i=1,\ldots,k,$

Otherwise
$$L(\mathcal{D}) = p_1 l_1 + \cdots + p_q l_q \ge p_i l_i > p \frac{L(\mathcal{C})}{p} = L(\mathcal{C})$$
.

So there are only finitely many choices for the code-words w_1,\dots,w_k in ${\it D}$

2.2 Binary Huffman Codes

• Let $T=Z_2=\{0,1\}$, Given a source S, we renumber the source-symbols s_1,\ldots,s_q , so that

$$p_1 \geq p_2 \geq \cdots \geq p_q$$
.

- Form a reduced source S' by combining the two least-likely symbols.
- Given any binary code C' for S', we can form a binary code C for S:

Binary Huffman Codes (Cont.)

- Lemma 2.4
 - If the code C' is instantaneous then so is C.
- Huffman code for S
 - Constructed by

$$S \to S' \to \cdots \to S^{(q-2)} \to S^{(q-1)}$$
$$C \leftarrow C' \leftarrow \cdots \leftarrow C^{(q-2)} \leftarrow C^{(q-1)}.$$

- Note: $C^{(q-1)} = \{ \varepsilon \}$ and $C^{(q-2)} = \{ \varepsilon 0, \varepsilon 1 \} = \{ 0, 1 \}$
- It is instantaneous

Example 2.5

$$\mathcal{S} \to \mathcal{S}' \to \cdots \to \mathcal{S}^{(q-2)} \to \mathcal{S}^{(q-1)}$$

 $\mathcal{C} \leftarrow \mathcal{C}' \leftarrow \cdots \leftarrow \mathcal{C}^{(q-2)} \leftarrow \mathcal{C}^{(q-1)}$.

• Let S have q=5 symbols $s_1,...,s_5$ with probabilities $p_i=0.3,0.2,0.2,0.2,0.1.$ Compute Huffman code and L(C)