Coding and Information Theory

Chapter 2 Optimal Codes

Xuejun Liang

The First Lecture of Chapter 2

Content of Chapter 2

2.1 Optimality
2.2 Binary Huffman Codes
2.3 Average Word-length of Huffman Codes
2.4 Optimality of Binary Huffman Codes
2.5 r-ary Huffman Codes
2.6 Extensions of Sources

2.1 Optimality

- Let S be a source and assume that the probabilities

$$
p_{i}=\operatorname{Pr}\left(X_{n}=s_{i}\right)=\operatorname{Pr}\left(s_{i}\right)
$$

where

$$
0 \leq p_{i} \leq 1, \quad \sum_{i=1}^{q} p_{i}=1
$$

- Assume code C for S has word-lengths $l_{1}, l_{2}, \ldots l_{q}$. Then the Average Word-Length is defined as

$$
L=L(\mathcal{C})=\sum_{i=1}^{q} p_{i} l_{i}
$$

- Given r and the probability distribution (p_{i}), we try to find instantaneous r-ary codes C minimizing $L(C)$.
- Such codes are called optimal or compact codes

Example 2.1

- Let S be the daily weather (as in Example 1.2)
- with $p_{i}=\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$ for $i=1,2,3$.
- Consider two instantaneous codes
- binary code \mathcal{C} : $s_{1} \mapsto 00, s_{2} \mapsto 01, s_{3} \mapsto 1$
- $L(C)=$
- binary code \mathcal{D} : $s_{1} \mapsto 00, s_{2} \mapsto 1, s_{3} \mapsto 01$
- $L(D)=$

Example 2.1

- Let S be the daily weather (as in Example 1.2)
- with $p_{i}=\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$ for $i=1,2,3$.
- Consider two instantaneous codes
- binary code \mathcal{C} : $s_{1} \mapsto 00, s_{2} \mapsto 01, s_{3} \mapsto 1$
$\cdot L(C)=1 / 4 * 2+1 / 2 * 2+1 / 4 * 1=1.75$
- binary code $\mathcal{D}: s_{1} \mapsto 00, s_{2} \mapsto 1, s_{3} \mapsto 01$
- $L(D)=1 / 4 * 2+1 / 2 * 1+1 / 4 * 2=1.5$

Lemma and Definition

- Lemma 2.2
- Given a source S and an integer r, the set of all average word-lengths $L(C)$ of uniquely decodable r-ary codes C for S is equal to the set of all average word-lengths $L(C)$ of instantaneous r-ary codes C for S.
- Can be proved directly from Corollary 1.22
- Definition
- An instantaneous r-ary code C is defined to be optimal if $L(C)=L_{\min }(S)$, which is the greatest lower bound of average word-lengths.

Theorem 2.3: Each source S has an optimal r-ary code for each integer $r \geq 2$.

- Proof: There exists C such that $L(C)=L_{\text {min }}(S)$
source-symbols: s_{1}, \ldots, s_{q}
Probability distribution: p_{1}, \ldots, p_{q}
Assume $\exists k$ such that $p_{i}>0$ for $i \leq k$, and $p_{i}=0$ for $i>k$
Let $p=\min \left(p_{1}, \ldots, p_{k}\right)$

1. There exists an instantaneous r-ary code C for S
put $l_{1}=\cdots=l_{q}=l$ for some l such that $r^{l} \geq q$, and apply Theorem 1.20.
2. $\{L(D): L(D) \leq L(C)$ and D is instantaneous r-ary code for $S\}$ is finite

The word-lengths l_{1}, \ldots, l_{k} of D must satisfy $\quad l_{i} \leq \frac{L(\mathcal{C})}{p}$ for $i=1, \ldots, k$,
Otherwise $\quad L(\mathcal{D})=p_{1} l_{1}+\cdots+p_{q} l_{q} \geq p_{i} l_{i}>p \frac{L(\mathcal{C})}{p}=L(\mathcal{C})$.
So there are only finitely many choices for the code-words w_{1}, \ldots, w_{k} in D

Theorem 2.3: Each source S has an optimal r-ary code for each integer $r \geq 2$.

- Proof: There exists C such that $L(C)=L_{\text {min }}(S)$
source-symbols: s_{1}, \ldots, s_{q}
Probability distribution: p_{1}, \ldots, p_{q}
Assume $\exists k$ such that $p_{i}>0$ for $i \leq k$, and $p_{i}=0$ for $i>k$
Let $p=\min \left(p_{1}, \ldots, p_{k}\right)$

1. There exists an instantaneous r-ary code C for S
put $l_{1}=\cdots=l_{q}=l$ for some l such that $r^{l} \geq q$, and apply Theorem 1.20.
2. $\{L(D): L(D) \leq L(C)$ and D is instantaneous r-ary code for $S\}$ is finite

The word-lengths l_{1}, \ldots, l_{k} of D must satisfy $\quad l_{i} \leq \frac{L(\mathcal{C})}{p}$ for $i=1, \ldots, k$,
Otherwise $\quad L(\mathcal{D})=p_{1} l_{1}+\cdots+p_{q} l_{q} \geq p_{i} l_{i}>p \frac{L(\mathcal{C})}{p}=L(\mathcal{C})$.
So there are only finitely many choices for the code-words w_{1}, \ldots, w_{k} in D

2.2 Binary Huffman Codes

- Let $T=Z_{2}=\{0,1\}$, Given a source S, we renumber the source-symbols s_{1}, \ldots, s_{q}, so that

$$
p_{1} \geq p_{2} \geq \cdots \geq p_{q} .
$$

- Form a reduced source S^{\prime} by combining the two least-likely symbols.
- Given any binary code C^{\prime} for S^{\prime}, we can form a binary code C for S :

Binary Huffman Codes (Cont.)

- Lemma 2.4
- If the code C^{\prime} is instantaneous then so is C.
- Huffman code for S
- Constructed by

$$
\begin{aligned}
& \mathcal{S} \rightarrow \mathcal{S}^{\prime} \rightarrow \cdots \rightarrow \mathcal{S}^{(q-2)} \rightarrow \mathcal{S}^{(q-1)} \\
& \mathcal{C} \leftarrow \mathcal{C}^{\prime} \leftarrow \cdots \leftarrow \mathcal{C}^{(q-2)} \leftarrow \mathcal{C}^{(q-1)} .
\end{aligned}
$$

- Note: $C^{(q-1)}=\{\varepsilon\}$ and $C^{(q-2)}=\{\varepsilon 0, \varepsilon 1\}=\{0,1\}$
- It is instantaneous

Example 2.5
 $$
\begin{aligned} & \mathcal{S} \rightarrow \mathcal{S}^{\prime} \rightarrow \cdots \rightarrow \mathcal{S}^{(q-2)} \rightarrow \mathcal{S}^{(q-1)} \\ & \mathcal{C} \leftarrow \mathcal{C}^{\prime} \leftarrow \cdots \leftarrow \mathcal{C}^{(q-2)} \leftarrow \mathcal{C}^{(q-1)} \end{aligned}
$$

- Let S have $q=5$ symbols s_{1}, \ldots, s_{5} with probabilities

$$
p_{i}=0.3,0.2,0.2,0.2,0.1
$$

Compute Huffman code and $L(C)$

